高三数学教学设计16篇【完整版】

时间:2023-07-23 11:25:02 来源:网友投稿

高三数学教学设计第1、理解复数的基本概念、复数相等的充要条件。2、了解复数的代数表示法及其几何意义。3、会进行复数代数形式的四则运算。了解复数的代数形式的加、减运算及其运算的几何意义。4、了解从自下面是小编为大家整理的高三数学教学设计16篇,供大家参考。

高三数学教学设计16篇

高三数学教学设计 第1篇

1、理解复数的基本概念、复数相等的充要条件。

2、了解复数的代数表示法及其几何意义。

3、会进行复数代数形式的四则运算。了解复数的代数形式的加、减运算及其运算的几何意义。

4、了解从自然数系到复数系的关系及扩充的基本思想,体会理性思维在数系扩充中的作用。本章重点:1。复数的有关概念;
2。复数代数形式的四则运算。

本章难点:运用复数的有关概念解题。近几年高考对复数的考查无论是试题的难度,还是试题在试卷中所占比例都是呈下降趋势,常以选择题、填空题形式出现,多为容易题。在复习过程中,应将复数的概念及运算放在首位。

知识网络

复数的概念及其运算

典例精析

题型一复数的概念

【例1】(1)如果复数(m2+i)(1+mi)是实数,则实数m=;

(2)在复平面内,复数1+ii对应的点位于第象限;

(3)复数z=3i+1的共轭复数为z= 。

【解析】(1)(m2+i)(1+mi)=m2—m+(1+m3)i是实数1+m3=0m=—1。

(2)因为1+ii=i(1+i)i2=1—i,所以在复平面内对应的点为(1,—1),位于第四象限。

(3)因为z=1+3i,所以z=1—3i。

【点拨】运算此类题目需注意复数的代数形式z=a+bi(a,bR),并注意复数分为实数、虚数、纯虚数,复数的几何意义,共轭复数等概念。

【变式训练1】(1)如果z=1—ai1+ai为纯虚数,则实数a等于()

A、0 B、—1 C、1 D、—1或1

(2)在复平面内,复数z=1—ii(i是虚数单位)对应的点位于()

A、第一象限B。第二象限C。第三象限D。第四象限

【解析】(1)设z=xi,x0,则

xi=1—ai1+ai1+ax—(a+x)i=0或故选D。

(2)z=1—ii=(1—i)(—i)=—1—i,该复数对应的点位于第三象限。故选C。

题型二复数的相等

【例2】(1)已知复数z0=3+2i,复数z满足zz0=3z+z0,则复数z=;

(2)已知m1+i=1—ni,其中m,n是实数,i是虚数单位,则m+ni=;

(3)已知关于x的方程x2+(k+2i)x+2+ki=0有实根,则这个实根为,实数k的值为。

【解析】(1)设z=x+yi(x,yR),又z0=3+2i,

代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,

整理得(2y+3)+(2—2x)i=0,

则由复数相等的条件得

解得所以z=1— 。

(2)由已知得m=(1—ni)(1+i)=(1+n)+(1—n)i。

则由复数相等的条件得

所以m+ni=2+i。

(3)设x=x0是方程的实根,代入方程并整理得

由复数相等的充要条件得

解得或

所以方程的实根为x=2或x= —2,

相应的k值为k=—22或k=22。

【点拨】复数相等须先化为z=a+bi(a,bR)的形式,再由相等得实部与实部相等、虚部与虚部相等。

【变式训练2】(1)设i是虚数单位,若1+2i1+i=a+bi(a,bR),则a+b的值是()

A、—12 B、—2 C、2 D、12

(2)若(a—2i)i=b+i,其中a,bR,i为虚数单位,则a+b=。

【解析】(1)C。1+2i1+i=(1+2i)(1—i)(1+i)(1—i)= 3+i2,于是a+b=32+12=2。

(2)3、2+ai=b+ia=1,b= 2。

题型三复数的运算

【例3】(1)若复数z=—12+32i,则1+z+z2+z3++z2 008=;

(2)设复数z满足z+|z|=2+i,那么z= 。

【解析】(1)由已知得z2=—12—32i,z3=1,z4=—12+32i =z。

所以zn具有周期性,在一个周期内的和为0,且周期为3。

所以1+z+z2+z3++z2 008

=1+z+(z2+z3+z4)++(z2 006+z2 007+z2 008)

=1+z=12+32i。

(2)设z=x+yi(x,yR),则x+yi+x2+y2=2+i,

所以解得所以z= +i。

【点拨】解(1)时要注意x3=1(x—1)(x2+x+1)=0的三个根为1,,—,

其中=—12+32i,—=—12—32i,则

1++2=0,1+—+—2=0,3=1,—3=1,—=1,2=—,—2=。

解(2)时要注意|z|R,所以须令z=x +yi。

【变式训练3】(1)复数11+i+i2等于()

A、1+i2 B、1—i2 C、—12 D、12

(2)(20_江西鹰潭)已知复数z=23—i1+23i+(21—i)2 010,则复数z等于()

A、0 B、2 C、—2i D、2i

【解析】(1)D。计算容易有11+i+i2=12。

(2)A。

总结提高

复数的代数运算是重点,是每年必考内容之一,复数代数形式的运算:①加减法按合并同类项法则进行;
②乘法展开、除法须分母实数化。因此,一些复数问题只需设z=a+bi(a,bR)代入原式后,就可以将复数问题化归为实数问题来解决。

高三数学教学设计 第2篇

●知识梳理

函数的综合应用主要体现在以下几方面:

1、函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合。

2、函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合。这是高考主要考查的内容。

3、函数与实际应用问题的综合。

●点击双基

1、已知函数f(x)=lg(2x—b)(b为常数),若x[1,+)时,f(x)0恒成立,则A、b1 B、b1 C、b1 D、b=1

解析:当x[1,+)时,f(x)0,从而2x—b1,即b2x—1、而x[1,+)时,2x—1单调增加,

b2—1=1。

答案:A

2、若f(x)是R上的减函数,且f(x)的图象经过点A(0,3)和B(3,—1),则不等式|f(x+1)—1|2的解集是___________________。

解析:由|f(x+1)—1|2得—2

又f(x)是R上的减函数,且f(x)的图象过点A(0,3),B(3,—1),

高三数学教学设计 第3篇

教学目标:

能熟练地根据抛物线的定义解决问题,会求抛物线的焦点弦长。

教学重点:

抛物线的标准方程的有关应用。

教学过程:

一、复习:

1、抛物线的定义:平面内与一个定点F和一条定直线l的距离相等的点的`轨迹叫做抛物线。点F叫做抛物线的焦点,直线l叫做抛物线的准线。

2、抛物线的标准方程:

二、新授:

例1、点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程。

解:略

例2、已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(—3,m)到焦点的距离等于5,求抛物线的方程和m的值。

解:略

例3、斜率为1的直线经过抛物线的焦点,与抛物线相交于两点A、B,求线段AB的长。

解:略

点评:1、本题有三种解法:一是求出A、B两点坐标,再利用两点间距离公式求出AB的长;
二是利用韦达定理找到x1与x2的关系,再利用弦长公式|AB|=求得,这是设而不求的思想方法;
三是把过焦点的弦分成两个焦半径的和,转化为到准线的距离。

2、抛物线上一点A(x0,y0)到焦点F的距离|AF|=这就是抛物线的焦半径公式,焦点弦长|AB|=x1+x2+p。

例4、在抛物线上求一点P,使P点到焦点F与到点A(3,2)的距离之和最小。

解:略

三、做练习:

第119页第5题

四、小结:

1、求抛物线的标准方程需判断焦点所在的坐标轴和确定p的值,过焦点的直线与抛物线的交点问题有时用焦点半径公式简单。

2、焦点弦的几条性质:设直线过焦点F与抛物线相交于A(x1,y1),B(x2,y2)两点,则:①;
②;
③通径长为2p;
④焦点弦长|AB|=x1+x2+p。

五、布置作业:

习题8.5第4、5、6、7题。

高三数学教学设计 第4篇

教学重点:

理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:

遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:

一、复习准备

1、等差数列的通项公式。

2、等差数列的前n项和公式。

3、等差数列的性质。

二、讲授新课

引入:

1、“一尺之棰,日取其半,万世不竭。”

2、细胞分裂模型

3、计算机病毒的传播

由学生通过类比,归纳,猜想,发现等比数列的特点

进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式

注意:

1、公比q是任意一个常数,不仅可以是正数也可以是负数。

2、当首项等于0时,数列都是0。当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3、当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?

4、以及等比数列和指数函数的关系

5、是后一项比前一项。

列:1,2,(略)

小结:等比数列的通项公式

三、巩固练习:

1、教材P59练习1,2,3,题

2、作业:P60习题1,4

高三数学教学设计 第5篇

教学目标:

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:

掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程

一、复习

二、引入新课

1.假言推理

假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;
小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;
小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论

三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;
(2)被断定的个别对象是该类的全部个别对象。

高三数学教学设计 第6篇

|

平面向量数量积的运算律

① 交换律:
( = ( ② 数乘结合律:( )( = ( ( ) = (( )

③ 分配律:( + )( = ( + (

平面向量数量积的坐标表示

①已知两个向量 , ,则 .

②设 ,则 .

③平面内两点间的距离公式 如果表示向量 的有向线段的起点和终点的坐标分别为

、 ,那么 .

④向量垂直的判定 两个非零向量 , ,则 .

⑤两向量夹角的余弦 cos( = ( ).

二、典型例题

平面向量数量积的运算

例题1 已知下列命题:

① ; ② ; ③ ; ④

其中正确命题序号是 ②、④ .

点评:
掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.

例题2 已知 ; (2) ;(3) 的夹角为 ,分别求 .

解(1)当 时, = 或 = .

(2)当 时, = .

(3)当 的夹角为 时, = .

变式训练:已知 ,求

解:
=

点评:
熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整.

夹角问题

例题3 若 ,且 ,则向量 与向量 的夹角为 ( )

解:依题意 故选C

变式训练1:① 已知 ,求向量 与向量 的夹角.

② 已知 , 夹角为 ,则 .

解:
① ,故夹角为 .

②依题意得 .

变式训练2:已知 是两个非零向量,同时满足 ,求 的夹角.

法一 解:将 两边平方得 ,

则 , 故 的夹角.为 .

法二:
数形结合

点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法.

向量模的问题

例题4 已知向量 满足 ,且 的夹角为 ,求 .

解:
,且 的夹角为;

变式训练 :

①(20XX年湖北)已知向量 ,若 不超过5,则 的取值范围 ( )

②(20XX年福建) 已知 的夹角为 , , ,则 等于( )

A 5 4 3 1

解:
① , 故选C

② , ,解得 ,故选B

点评:涉及向量模的问题一般利用 ,注意两边平方是常用的方法.

平面向量数量积的综合应用

例题5 已知向量 .

若 ; (2)求 的最大值 .

解:(1)若 ,则 , .

(2) = =

, 的最大值为 .

例题6已知向量 ,且 满足 ,

求证 ; (2)将 与 的数量积表示为关于 的函数 ;

(3)求函数 的最小值及取得最小值时向量 与向量 的夹角 .

解:(1), 

       故

(2) ,

故 .

高三数学教学设计 第7篇

教学目标:

能熟练地根据抛物线的定义解决问题,会求抛物线的焦点弦长。

教学重点:

抛物线的标准方程的有关应用。

教学过程:

一、复习:

1、抛物线的定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线。点F叫做抛物线的焦点,直线l叫做抛物线的准线。

2、抛物线的标准方程:

二、新授:

例1、点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程。

解:略

例2、已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(—3,m)到焦点的距离等于5,求抛物线的方程和m的值。

解:略

例3、斜率为1的直线经过抛物线的焦点,与抛物线相交于两点A、B,求线段AB的长。

解:略

点评:

1、本题有三种解法:一是求出A、B两点坐标,再利用两点间距离公式求出AB的长;
二是利用韦达定理找到x1与x2的关系,再利用弦长公式|AB|=求得,这是设而不求的思想方法;
三是把过焦点的弦分成两个焦半径的和,转化为到准线的距离。

2、抛物线上一点A(x0,y0)到焦点F的距离|AF|=这就是抛物线的焦半径公式,焦点弦长|AB|=x1+x2+p。

例4、在抛物线上求一点P,使P点到焦点F与到点A(3,2)的距离之和最小。

解:略

三、小结:

1、求抛物线的标准方程需判断焦点所在的坐标轴和确定p的值,过焦点的直线与抛物线的交点问题有时用焦点半径公式简单。

2、焦点弦的几条性质:设直线过焦点F与抛物线相交于A(x1,y1),B(x2,y2)两点,则:①;
②;
③通径长为2p;
④焦点弦长|AB|=x1+x2+p。

高三数学教学设计 第8篇

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:

一.复习准备

1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课

引入:1“一尺之棰,日取其半,万世不竭。”

2细胞分裂模型

3计算机病毒的传播

由学生通过类比,归纳,猜想,发现等比数列的特点

进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式

注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?

4以及等比数列和指数函数的关系

5是后一项比前一项。

列:1,2,(略)

小结:等比数列的通项公式

三.巩固练习:

1.教材P59练习1,2,3,题

2.作业:P60习题1,4。

第二课时5.2.4等比数列(二)

教学重点:等比数列的性质

教学难点:等比数列的通项公式的应用

一.复习准备:

提问:等差数列的通项公式

等比数列的通项公式

等差数列的性质

二.讲授新课:

1.讨论:如果是等差列的三项满足

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足

2练习:如果等比数列=4,=16,=?(学生口答)

如果等比数列=4,=16,=?(学生口答)

3等比中项:如果等比数列.那么,

则叫做等比数列的等比中项(教师给出)

4思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

三.巩固练习:

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项

解(略)

列4:略:

练习:1在等比数列,已知那么

2P61A组8

高三数学教学设计 第9篇

PN|为定值,这个值为1。

(3)由题意可设M(t,t),可知N(0,y0)。

∵PM与直线y=x垂直,kPM1=—1,即=—1。解得t=(x0+y0)。

又y0=x0+,t=x0+ 。

S△OPM= +,S△OPN= x02+ 。

S四边形OMPN=S△OPM+S△OPN=(x02+)+ 1+ 。

当且仅当x0=1时,等号成立。

此时四边形OMPN的面积有最小值1+ 。

探究创新

8、有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计)。有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b)。

(1)请你求出这种切割、焊接而成的长方体的最大容积V1;

(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2V1。

解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4—2x,高为x,

V1=(4—2x)2x=4(x3—4x2+4x)(0

V1=4(3x2—8x+4)。

令V1=0,得x1=,x2=2(舍去)。

而V1=12(x—)(x—2),

又当x时,V10;

当x=时,V1取最大值。

(2)重新设计方案如下:

如图①,在正方形的两个角处各切下一个边长为1的小正方形;
如图②,将切下的小正方形焊在未切口的正方形一边的中间;
如图③,将图②焊成长方体容器。

新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=321=6,显然V2V1。

故第二种方案符合要求。

●思悟小结

1、函数知识可深可浅,复习时应掌握好分寸,如二次函数问题应高度重视,其他如分类讨论、探索性问题属热点内容,应适当加强。

2、数形结合思想贯穿于函数研究的各个领域的全部过程中,掌握了这一点,将会体会到函数问题既千姿百态,又有章可循。

●教师下载中心

教学点睛

数形结合和数形转化是解决本章问题的重要思想方法,应要求学生熟练掌握用函数的图象及方程的曲线去处理函数、方程、不等式等问题。

拓展题例

【例1】设f(x)是定义在[—1,1]上的奇函数,且对任意a、b[—1,1],当a+b0时,都有0。

(1)若ab,比较f(a)与f(b)的大小;

(2)解不等式f(x—)

(3)记P={x|y=f(x—c)},Q={x|y=f(x—c2)},且PQ=,求c的取值范围。

解:设—1x1

0。

∵x1—x20,f(x1)+f(—x2)0。

f(x1)—f(—x2)。

又f(x)是奇函数,f(—x2)=—f(x2)。

f(x1)

f(x)是增函数。

(1)∵ab,f(a)f(b)。

(2)由f(x—)

— 。

不等式的解集为{x|— }。

(3)由—11,得—1+c1+c,

P={x|—1+c1+c}。

由—11,得—1+c21+c2,

Q={x|—1+c21+c2}。

∵PQ=,

1+c—1+c2或—1+c1+c2,

解得c2或c—1。

【例2】已知函数f(x)的图象与函数h(x)=x+ +2的图象关于点A(0,1)对称。

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围。

(理)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围。

解:(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(—x,2—y)在h(x)的图象上。

2—y=—x+ +2。

y=x+,即f(x)=x+ 。

(2)(文)g(x)=(x+)x+ax,

即g(x)=x2+ax+1。

g(x)在(0,2]上递减— 2,

a—4。

(理)g(x)=x+ 。

∵g(x)=1—,g(x)在(0,2]上递减,

1— 0在x(0,2]时恒成立,

即ax2—1在x(0,2]时恒成立。

∵x(0,2]时,(x2—1)max=3,

a3。

【例3】在4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位:件)f(n)关于时间n(130,nN_)的函数关系如下图所示,其中函数f(n)图象中的点位于斜率为5和—3的两条直线上,两直线的交点的横坐标为m,且第m天日销售量最大。

(1)求f(n)的表达式,及前m天的销售总数;

(2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失。试问该服装在社会上流行的天数是否会超过10天?并说明理由。

解:(1)由图形知,当1m且nN_时,f(n)=5n—3。

由f(m)=57,得m=12。

f(n)=

前12天的销售总量为

5(1+2+3++12)—312=354件。

(2)第13天的销售量为f(13)=—313+93=54件,而354+54400,

从第14天开始销售总量超过400件,即开始流行。

设第n天的日销售量开始低于30件(1221。

从第22天开始日销售量低于30件,

即流行时间为14号至21号。

该服装流行时间不超过10天。

高三数学教学设计 第10篇

|

平面向量数量积的运算律

① 交换律:
( = ( ② 数乘结合律:( )( = ( ( ) = (( )

③ 分配律:( + )( = ( + (

平面向量数量积的坐标表示

①已知两个向量 , ,则 .

②设 ,则 .

③平面内两点间的距离公式 如果表示向量 的有向线段的起点和终点的坐标分别为

、 ,那么 .

④向量垂直的判定 两个非零向量 , ,则 .

⑤两向量夹角的余弦 cos( = ( ).

二、典型例题

平面向量数量积的运算

例题1 已知下列命题:

① ; ② ; ③ ; ④

其中正确命题序号是 ②、④ .

点评:
掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.

例题2 已知 ; (2) ;(3) 的夹角为 ,分别求 .

解(1)当 时, = 或 = .

(2)当 时, = .

(3)当 的夹角为 时, = .

变式训练:已知 ,求

解:
=

点评:
熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整.

夹角问题

例题3 (20XX年北京)若 ,且 ,则向量 与向量 的夹角为 ( )


高三数学教学设计 第11篇

根据学科特点,结合我校数学教学的实际情况制定以下教学计划,第二学期高三数学教学计划。

一、教学内容高中数学所有内容:

抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。研究《考试说明》,全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是我们重要工作,提高学生的解题能力是我们目标。研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

二、学情分析:

我今年教授两个班的数学:(17)班和(18)班,经过与同组的其他老师商讨后,打算第一轮20XX年2月底;
第二轮从20XX年2月底至5月上旬结束;
第三轮从20XX年5月上旬至5月底结束。

(一)同备课组老师之间加强研究

1、研究《课程标准》、参照周边省份20XX年《考试说明》,明确复习教学要求。

2、研究高中数学教材。

处理好几种关系:课标、考纲与教材的关系;
教材与教辅资料的关系;
重视基础知识与培养能力的关系。

3、研究08年新课程地区高考试题,把握考试趋势。

特别是山东、广东、江苏、海南、宁夏等课改地区的试卷。

4、研究高考信息,关注考试动向。

及时了解09高考动态,适时调整复习方案。

5、研究本校数学教学情况、尤其是本届高三学生的学情。

有的放矢地制订切实可行的校本复习教学计划。

(一)重视课本,夯实基础,建立良好知识结构和认知结构体系课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。

(二)提升能力,适度创新考查能力是高考的重点和永恒主题。

教育部已明确指出高考从“以知识立意命题”转向“以能力立意命题”。

(三)强化数学思想方法数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。

注重对数学思想方法的考查也是高考数学命题的显著特点之一。

数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活,教学工作计划《第二学期高三数学教学计划》。

在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高三复习时就需不断利用这些思想方法去处理实际问题,而并非只在高三复习将结束时去讲一两个专题了事。

(四)强化思维过程,提高解题质量数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。

多题一解有利于培养学生的求同思维;
一题多解有利于培养学生的求异思维;
一题多变有利于培养学生思维的灵活性与深刻性。

在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。

(五)认真总结每一次测试的得失,提高试卷的讲评效果试卷讲评要有科学性、针对性、辐射性。

讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用“配方法、待定系数法、数形结合,分类讨论,换元”等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。

四、该阶段需要解决的问题是:

1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。

2、检查复习的知识疏漏点和解题易错点,探索解题的规律。

3、检验知识网络的生成过程。

4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。

五、在有序做好复习工作的同时注意一下几点:

(1)从班级实际出发,我要帮助学生切实做到对基础训练限时完成,加强运算能力的训练,严格答题的规范化,如小括号、中括号等,特别是对那些书写“像雾像雨又像风”的学生要加强指导,确保基本得分。

(2)在考试的方法和策略上做好指导工作,如心理问题的疏导,考试时间的合理安排等等。

(3)与备课组其他老师保持统一,对内协作,对外竞争。自己多做研究工作,如仔细研读订阅的杂志,研究典型试题,把握高考走势。

(4)做到“有练必改,有改必评,有评必纠”。

(5)课内面向大多数同学,课外抓好优等生和边缘生,尤其是边缘生。

班级是一个集体,我们的目标是“水涨船高”,而不是“水落石出”。

(6)要改变教学方式,努力学习和实践我校总结推出的“221”模式。

教学是一门艺术,艺术是无止境的,要一点天份,更要勤奋。

(7)教研组团队合作虚心学习别人的优点,博采众长,对工作是很有利的。

(8)平等对待学生,关心每一位学生的成长,宗旨是教出来的学生不一定都很优秀,但肯定每一位都有进步;
让更多的学生喜欢数学。

高三数学教学设计 第12篇

【高考要求】:

三角函数的有关概念(B)。

【教学目标】:

理解任意角的概念;
理解终边相同的角的意义;
了解弧度的意义,并能进行弧度与角度的互化。

理解任意角三角函数(正弦、余弦、正切)的定义;
初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切。

【教学重难点】:

终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义。

【知识复习与自学质疑】

一、问题。

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习。

1、给出下列命题:

(1)小于的角是锐角;

(2)若是第一象限的角,则必为第一象限的"角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;
终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

(7)若角与角有相同的终边,则角(的"终边必在轴的非负半轴上。其中正确的命题的序号是

2、设P点是角终边上一点,且满足则的值是

3、一个扇形弧AOB的面积是1,它的周长为4,则该扇形的中心角=弦AB长=

4、若则角的终边在象限。

5、在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是

6、若是第三象限的角,则—,的终边落在何处?

【交流展示、互动探究与精讲点拨】

例1、如图,分别是角的终边。

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在OM位置,终边在ON位置的所有角的集合。

例2。(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点A,求的值。

例3、若,则在第象限。

例4、若一扇形的周长为20,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大面积是多少?

【矫正反馈】

1、若锐角的终边上一点的坐标为,则角的弧度数为。

2、若,又是第二,第三象限角,则的取值范围是。

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是。

4、已知点P在第三象限,则角终边在第象限。

5、设角的终边过点P,则的值为。

6、已知角的终边上一点P且,求和的值。

【迁移应用】

1、经过3小时35分钟,分针转过的角的弧度是。时针转过的角的弧度数是。

2、若点P在第一象限,则在内的取值范围是。

3、若点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点坐标为。

4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值。

高三数学教学设计 第13篇

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4)学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

(2)过程与方法

引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度与价值观

在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

(二)重点难点

本节课的教学重点是________________________,教学难点是_____________________。

三、教法、学法分析

(一)教法

基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

(二)学法

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

四、教学过程分析

(一)教学过程设计

教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

(1)创设情境,提出问题。

新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。

(2)引导探究,建构概念。

数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程.

(3)自我尝试,初步应用。

有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

(4)当堂训练,巩固深化。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(5)小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.


高三数学教学设计 第14篇

教学重点:

等比数列的性质

教学难点:

等比数列的通项公式的应用

一、复习准备:

提问:等差数列的通项公式

等比数列的通项公式

等差数列的性质

二、讲授新课:

1、讨论:如果是等差列的三项满足

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足

2、练习:如果等比数列=4,=16,=?(学生口答)

如果等比数列=4,=16,=?(学生口答)

3、等比中项:如果等比数列。那么,

则叫做等比数列的等比中项(教师给出)

4、思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5、思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6、思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

三、巩固练习:

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项

解(略)

列4:略:

练习:1在等比数列,已知那么

高三数学教学设计 第15篇

答案:(—1,2)

●典例剖析

【例1】取第一象限内的点P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差数列,1,y1,y2,2依次成等比数列,则点P1、P2与射线l:y=x(x0)的关系为

A、点P1、P2都在l的上方

B、点P1、P2都在l上

C、点P1在l的下方,P2在l的上方

D、点P1、P2都在l的下方

剖析:x1= +1=,x2=1+ =,y1=1 =,y2=,∵y1

P1、P2都在l的下方。

答案:D

【例2】已知f(x)是R上的偶函数,且f(2)=0,g(x)是R上的奇函数,且对于xR,都有g(x)=f(x—1),求f(20_)的值。

解:由g(x)=f(x—1),xR,得f(x)=g(x+1)。又f(—x)=f(x),g(—x)=—g(x),

故有f(x)=f(—x)=g(—x+1)=—g(x—1)=—f(x—2)=—f(2—x)=—g(3—x)=

g(x—3)=f(x—4),也即f(x+4)=f(x),xR。

f(x)为周期函数,其周期T=4。

f(20_)=f(4500+2)=f(2)=0。

评述:应灵活掌握和运用函数的奇偶性、周期性等性质。

【例3】函数f(x)=(m0),x1、x2R,当x1+x2=1时,f(x1)+f(x2)= 。、

(1)求m的值;

(2)数列{an},已知an=f(0)+f()+f()++f()+f(1),求an。

解:(1)由f(x1)+f(x2)=,得+ =,

4 +4 +2m= [4 +m(4 +4)+m2]。

∵x1+x2=1,(2—m)(4 +4)=(m—2)2。

4 +4 =2—m或2—m=0。

∵4 +4 2 =2 =4,

而m0时2—m2,4 +4 2—m。

m=2。

(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+ f()++f()+f(0)。

2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]= + ++ = 。

an= 。

深化拓展

用函数的思想处理方程、不等式、数列等问题是一重要的思想方法。

【例4】函数f(x)的定义域为R,且对任意x、yR,有f(x+y)=f(x)+f(y),且当x0时,f(x)0,f(1)=—2。

(1)证明f(x)是奇函数;

(2)证明f(x)在R上是减函数;

(3)求f(x)在区间[—3,3]上的最大值和最小值。

(1)证明:由f(x+y)=f(x)+f(y),得f[x+(—x)]=f(x)+f(—x),f(x)+ f(—x)=f(0)。又f(0+0)=f(0)+f(0),f(0)=0。从而有f(x)+f(—x)=0。

f(—x)=—f(x)。f(x)是奇函数。

(2)证明:任取x1、x2R,且x10。f(x2—x1)0。

—f(x2—x1)0,即f(x1)f(x2),从而f(x)在R上是减函数。

(3)解:由于f(x)在R上是减函数,故f(x)在[—3,3]上的最大值是f(—3),最小值是f(3)。由f(1)=—2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(—2)=—6,f(—3)=—f(3)=6。从而最大值是6,最小值是—6。

深化拓展

对于任意实数x、y,定义运算x_y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算。现已知1_2=3,2_3=4,并且有一个非零实数m,使得对于任意实数x,都有x_m=x,试求m的值。

提示:由1_2=3,2_3=4,得

b=2+2c,a=—1—6c。

又由x_m=ax+bm+cmx=x对于任意实数x恒成立,

b=0=2+2c。

c=—1。(—1—6c)+cm=1。

—1+6—m=1。m=4。

答案:4。

●闯关训练

夯实基础

1、已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上

A、单调递减且最大值为7 B、单调递增且最大值为7

C、单调递减且最大值为3 D、单调递增且最大值为3

解析:互为反函数的两个函数在各自定义区间上有相同的增减性,f—1(x)的值域是[1,3]。

答案:C

2、关于x的方程|x2—4x+3|—a=0有三个不相等的实数根,则实数a的值是___________________。

解析:作函数y=|x2—4x+3|的图象,如下图。

由图象知直线y=1与y=|x2—4x+3|的图象有三个交点,即方程|x2—4x+3|=1也就是方程|x2—4x+3|—1=0有三个不相等的实数根,因此a=1。

答案:1

3、若存在常数p0,使得函数f(x)满足f(px)=f(px—)(xR),则f(x)的一个正周期为__________。

解析:由f(px)=f(px—),

令px=u,f(u)=f(u—)=f[(u+)— ],T=或的整数倍。

答案:(或的整数倍)

4、已知关于x的方程sin2x—2sinx—a=0有实数解,求a的取值范围。

解:a=sin2x—2sinx=(sinx—1)2—1。

∵—11,0(sinx—1)24。

a的范围是[—1,3]。

5、记函数f(x)=的定义域为A,g(x)=lg[(x—a—1)(2a—x)](a1)的定义域为B。

(1)求A;

(2)若B A,求实数a的取值范围。

解:(1)由2— 0,得0,

x—1或x1,即A=(—,—1)[1,+)。

(2)由(x—a—1)(2a—x)0,得(x—a—1)(x—2a)0。

∵a1,a+12a。B=(2a,a+1)。

∵B A,2a1或a+1—1,即a或a—2。

而a1,1或a—2。

故当B A时,实数a的取值范围是(—,—2][,1)。

培养能力

6、(理)已知二次函数f(x)=x2+bx+c(b0,cR)。

若f(x)的定义域为[—1,0]时,值域也是[—1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;
若不存在,请说明理由。

解:设符合条件的f(x)存在,

∵函数图象的对称轴是x=—,

又b0,— 0。

①当— 0,即01时,

函数x=—有最小值—1,则

或(舍去)。

②当—1—,即12时,则

(舍去)或(舍去)。

③当— —1,即b2时,函数在[—1,0]上单调递增,则解得

综上所述,符合条件的函数有两个,

f(x)=x2—1或f(x)=x2+2x。

(文)已知二次函数f(x)=x2+(b+1)x+c(b0,cR)。

若f(x)的定义域为[—1,0]时,值域也是[—1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;
若不存在,请说明理由。

解:∵函数图象的对称轴是

x=—,又b0,— — 。

设符合条件的f(x)存在,

①当— —1时,即b1时,函数f(x)在[—1,0]上单调递增,则

②当—1—,即01时,则

(舍去)。

综上所述,符合条件的函数为f(x)=x2+2x。

7、已知函数f(x)=x+的定义域为(0,+),且f(2)=2+ 。设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N。

(1)求a的值。

(2)问:|PM

高三数学教学设计 第16篇

平面向量的数量积教案

考纲要求:掌握平面向量的数量积及其几何意义,了解用平面向量的数量积处理有关长度、角度、垂直问题,掌握向量垂直的条件.

高考预测:(1)客观题---- 考查数量积的定义、性质及运算律,难度较低.

(2)主观题---以平面向量的数量积为工具,考查其综合应用,多与函数、三角函数、不等式联系,难度中等.

教学目标:

(i)知识目标:

(1)掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示.

(2) 平面向量数量积的应用.

(ii)能力目标:

(1) 培养学生应用平面向量积解决相关问题的能力.

(2) 正确运用向量运算律进行推理、运算.

教学重点:
掌握平面向量的数量积及其几何意义.

用数量积求夹角、距离及平面向量数量积的坐标运算.

教学难点:
平面向量数量积的综合应用.

教 具:多媒体.

教材教法分析:

本节课是高三第一轮平面向量数量积复习课,重点掌握平面向量数量积及几何意义.用数量积求夹角、距离及平面向量数量积的坐标运算.渗透化归思想以及数形结合思想.

?教学过程:

一、追溯

(修改:这部分属知识点回顾,既然是高三复习课,可把相关知识点以填空的形式展示出来。一方面可要求不主动学习学生完成必要的任务,另一方面也把知识的重点部分展现在所有学生面前。)

平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量|

推荐访问:数学教学 设计 高三 高三数学教学设计16篇 高三数学教学设计(汇总16篇) 高三数学教学设计全套