组合图形面积教学设计人教版,组合图形面积教学设计及设计意图(六篇)

时间:2023-04-20 05:25:19 来源:网友投稿

下面是小编为大家整理的组合图形面积教学设计人教版,组合图形面积教学设计及设计意图(六篇),供大家参考。

组合图形面积教学设计人教版,组合图形面积教学设计及设计意图(六篇)

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

组合图形的面积教学设计人教版 组合图形的面积教学设计及设计意图篇一

苏教版小学数学第十册第106页例10及练一练,练习十九第6—9题。

在《圆》这个单元的教学中,圆是从生活中引入,进而探讨圆的特征及各部分名称,和生活中为什么很多物体都是圆形的等等,使学生感知圆在生活中无处不在,圆是美丽的。再探讨了求圆的周长计算方法和求圆的面积计算的方法后,并将之运用到生活中解决了很多生活中的实际问题,使学生体会到数学来源于生活,高于生活,再回归到生活中能帮助我们去解决实际问题,提高学习能动性。

《组合图形的面积》的设计理念依然是——由生活中的组合图形引入新课,进而回归到生活中去解决圆环形铁片的面积和窗户的面积以及光盘的面积。同时本节课的教学设计突出数学思想方法的渗透,让学生积极主动参与知识的形成过程,重视将解决问题的策略、技巧潜移默化的交给学生,让学生获得了数学思想方法,并培养了学生探索问题的能力。

本节课主要让学生利用已经掌握的圆的面积及其它图形面积公式计算组合图形面积。例题选择的素材是计算圆环铁片的面积。教材着重通过呈现解决问题的步骤引导学生掌握求圆环面积的基本思路。教材先让学生按步骤解答问题,然后启发学生联系学过的运算律探索简便计算方法。“试一试”和“练一练”中的组合图形都是由两个基本图形组合而成,计算这些组合图形的面积,有时需要计算两个基本图形的面积之差,有时需要计算两个基本图形的面积之和。

《组合图形的面积》是在学生认识了圆的特征、圆各部分名称、掌握了圆的周长计算和圆的面积计算方法的基础上,进行组合图形面积计算的教学的。

1、让学生结合具体情境认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。能正确计算简单的有关圆的组合图形的面积。

2、通过操作、探索、发现、交流等活动,培养学生独立思考、合作创新意识和灵活运用知识解决问题的能力,进一步发展学生的空间观念和交流能力。

3、在解决实际问题的过程中,提高学生对数学的好奇心和求知欲,感受数学的魅力,体会数学的应用价值。

探索并掌握组合图形的面积计算方法。

灵活地把组合图形转化为所学过的基本图形,正确计算。

ppt课件,圆规、硬纸、剪刀(学生也准备)

一、复习导入

1、师:前面学习了圆的面积计算,说说圆面积的计算公式?(板书)回顾一下我们还学习了哪些平面图形面积的计算公式?(板书)

2、引入新课:生活中我们不但能看到圆形的物体,还常常会看到由圆和其他图形组成的图形(出示课件),像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)组合图形在日常生活中有着广泛的应用,认识了生活中的组合图形,这节课我们将利用已有的知识一起来研究有关组合图形面积的计算(出示课题)。

[设计意图:在复习所学的基本图形面积计算的基础上,通过生活中的组合图形引入新课,使学在头脑中对组合图形产生感性的认识。为下面学习求组合图形的面积打下基础。]

二、探索新知

1、认识圆环

(1)出示圆环形铁片(课件)

问:知道这个铁片是什么图形吗?仔细观察:圆环有些什么特征呢,谁来向大家介绍一下(生介绍圆环)

师对学生的回答给与评价。明确:圆环是两个圆心相同、半径不相等的圆形所组成的宽度相等的图形。

(2)联系生活

同学们想一想:生活中哪些地方还有圆环?

2、做圆环

(1)谈话:我们认识了圆环,现在你能用准备好的材料动手做一个圆环吗?

指名学生展示自己做的圆环,并向大家介绍做圆环的方法。

(2)师拿出自己做的圆环并小结做圆环的方法。

请生指出圆环的面积是哪部分。

[设计意图:学生在认识了圆环的基础上,引导学生找生活中的圆环,并动手做出圆环,由具体的实物抽象出几何图形,不但让学生经历知识的形成过程,使学生能直观地发现、理解并掌握圆环面积计算方法,而且对数学知识与生活的紧密联系有了一定的认识。]

3、学习例10

(1)在圆环形铁片图的右边出示例10(课件)

请生读题,你获得了哪些信息?

问:求这个铁片的面积,就是求什么形状的面积?

师:会求这个铁片的面积吗?(生尝试做)指名板演,师巡视,发现有用简便做法的请上台板演(如果没有用简便方法做的,在第一种方法反馈之后,可启发学生有简便做法吗?)。

同桌交流求面积的方法。

(2)反馈第一种基本方法,请板演学生当小老师,说说自己的解题思路。

板书:外圆面积—内圆面积=圆环面积。

反馈第二种方法,请板演学生说说你是怎样想的?

两种方法有什么联系?(运用乘法分配律)

(3)师生共同小结:计算圆环面积的基本方法是从外圆面积中减去内圆面积,还可以进行简便计算。如果用r表示外圆半径,用r表示内圆半径,那么,求圆环面积的计算公式就是:s=πr2 —πr2或s=π(r2—r2)(板书)

[设计意图:让学生经历圆环面积的简便算法的形成过程,鼓励学生用不同的方法进行计算,并引导学生发现简便方法,体现两种方法之间的内在联系。]

4、对比,归纳方法

出示大小两圆拼成的新图形,与圆环图进行对比(课件),请学生说说这两题的联系与区别。归纳此类组合图形面积的计算方法(求面积之差)。

5、尝试“试一试”(出示课件)

(1)出示“试一试”,学生小组讨论:

窗户的形状是由哪些基本图形组合而成的?

要求窗户的面积就是求什么?

半圆和正方形有什么相关联的地方?

半圆面积该怎样求?

(2)再全班交流。

(3)学生尝试列式计算,指名板演。

(4)反馈,明确:正方形的边长就是半圆的直径。交流解题方法,重点强调半圆面积必须是用整圆的面积除以2(别忘了除以2)。

5、观察比较,小结方法

(1)讨论:例题中的圆环和“试一试”中的窗户,两题中的图形

都属于组合图形,两个图形的组合方式有什么不同的地方?窗户和圆环在求面积上有什么不同?你发现他们在解决问题的思路有什么相同的地方?有什么不同的地方?

(2)组织全班交流。(圆环是大圆里挖去小圆,窗户是半圆形和正方形两个图形拼加。求圆环面积是大圆面积减去小圆面积,求窗户面积是半圆形面积加上正方形面积。解题思路相同之处都是要先算出组合图形中的基本图形的面积,不同之处是一个是基本图形的面积相减,一个是基本图形的面积相加。)

(3)小结归纳组合图形面积计算基本方法。

师:圆、半圆或其它基本的平面图形组合在一起,产生组合图形,在计算组合图形面积的时候,先看清这个组合图形是由哪些基本图形组成的,再根据组合方式决定把基本图形的面积相加还是基本图形的面积相减。

[设计意图:引导学生充分讨论交流,根据讨论的结果,总结求组合图形的方法,注重将解决问题的策略、技巧潜移默化的交给学生,让每个学生都参与到数学活动中来。]

三、运用巩固

1、基本练习:练一练(课件出示)

思考:(1)下面的组合图形的需要计算哪些基本图形的面积?

(2)涂色部分面积怎样求?

(3)左图,两个基本图形有什么联系?右图呢?

学生先同位交流,再全班交流,(明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。)然后每人各选一题列式计算。

2、综合拓展练习:练习十九第6题(课件出示)

(1) 计算下面组合图形涂色部分的面积各需要需要哪些条件?

(2) 涂色部分面积怎样求?

学生先同位交流,再全班交流:说说计算需要测量哪些数据,再交流算法。

3、眼力大比拼:三个正方形涂色部分的面积相等吗?为什么?(练习十九第7题课件出示)

指名学生根据图形作出直观的判断,并说说判断的方法。

四、总结交流

今天我们一起学习了什么知识?你有哪些收获?在求组合图形的面积时一般需要注意什么?有什么宝贵的解题经验想和大家分享?

五、实践延伸

出示光盘,同学们你能想办法算出(自己家里的)光盘的面积吗?课后完成。

[设计意图:练习设计体现了针对性、层次性、综合性和实践性。最后的课外延伸环节,让学生计算自己熟悉的光盘的面积,可以提高学生运用数学知识解决实际问题的能力,感受到数学在生活中的应用价值和数学的魅力所在。]

组合图形面积

基本图形的面积相加或相减

例:外圆面积—内圆面积=圆环面积。

s=πr2 —πr2

s=π(r2—r2)

组合图形的面积教学设计人教版 组合图形的面积教学设计及设计意图篇二

《组合图形的面积》是第五单元的第一课。学生在三年级已学习了长方形和正方形的面积计算,在教材第二单元又学习了平行四边形、三角形和梯形的面积计算,本课组合图形面积的计算是这些知识的延展,也是实际生活中需要解决的问题。在已有知识基础上学习组合图形,一方面可以巩固基本图形的面积计算,另一方面还能将所学知识加以综合运用,提高学生解决实际问题的综合能力。

作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。

1、在自主探索活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

1、通过联系生活实际,使学生感受到计算组合图形面积的必要性。

2、学生通过参与探索活动,思维得到拓展,能力得到了提升,同时也掌握了多种解题策略。

3、通过小组探索研究,使学生认识到与人合作的重要性,从而加强合作意识。

1、在解决组合图形面积时,通过认真观察,独立思考、自主探索寻找解决问题的策略 。

2、通过小组讨论交流,理解解决问题的多种策略,从而经过比较选择最好的解题方法。

重点:能正确计算组合图形的面积。

难点:能根据各种组合图形的条件,正确选择计算方法并解答。

组合图形的面积教学设计人教版 组合图形的面积教学设计及设计意图篇三

1、知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。

2、能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。

3、情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。

教学重点:能根据条件求组合图形的面积。

教学难点:理解分解图形时简单图形的差。

教具准备:图形卡片

数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:

1、实物投影:同学们,你们说说这些图形像什么?

师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?

师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。

2、出示基本图形,从而复习已学过的基本知识。

师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)

学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。

教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?

1、在拼图活动中认识组合图形。

师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)

师:同学们刚才拼出了各式各样的图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?

生:利用实物投影展示自己的作品。

师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言

师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)

师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。

师:说说这里面有你认识的图形吗?你是怎样看出来的?

师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)

师:学生展示交流结果。

(选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)

师:刚才大家的学习都很积极努力,接下来要继续加油呀!

2、生:找到了组合图形和基本图形之间的关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。

我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。

3、在探索活动中寻找计算方法。出示例题:

师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。

师:现在请你估计一下,客厅的面积有多大?

师:这个图形实际上就是一个什么图形?

师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)

师:那么你想怎样求这个图形的面积呢?

学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。

小组活动:请同学们利用自己手上的题纸,分一分,算一算。

师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)

学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。

师:根据不同的方法,请学生给这些方法分一分类。

师:板书:分割法和添补法。

师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)

师:说说你喜欢那种方法?为什么?

师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。

利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。

让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。

1、出示图形进行练习

试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。

(1)这张硬纸板还剩下多大的面积?

(2)有一面墙,粉刷这面墙每平方米需用0.15千克涂料,一共要用多少千克涂料?

(3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。

四、小结。

师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?

把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。

组合图形的面积教学设计人教版 组合图形的面积教学设计及设计意图篇四

组合图形面积的计算是平面图形知识在小学阶段的综合应用。计算一个组合图形的面积,有时可以有多种方法,为了提高学生的解题能力,除了让学生加强练习以外,还应教绐他们一定的解题技巧。经过多年的教学实践,我收集和整理了一些关于组合图形面积的计算方法和技巧。如割补法、平移法、等分法、等积变形法、翻折法、旋转法、重叠法等等。我们要根据图形的特征、已知条件,以及整体与部分的关系,选择最佳解法。

本节微课主要学习割补法、等积变形、旋转法等三种方法。

1、 知道求组合图形的面积就是求几个图形面积的和(或差);
能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

2、 注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。

讲解法、演示法

一 、割补法

这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。

ppt演示变化过程,并出示解题过程。

二、等积变形法。

这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。

ppt演示变化过程,并出示解题过程。

三、旋转法。

这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。

ppt演示变化过程,并出示解题过程。

四、小结方法

求组合图形面积可按以下步骤进行

1、弄清组合图形所求的是哪些部分的面积。

2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。

组合图形的面积教学设计人教版 组合图形的面积教学设计及设计意图篇五

1、巩固已学平面图形特征的认识,学会用割(加)、补(减)等方法求组合图形的面积

2、通过动手、动脑、剪剪、拼拼和想象,培养学生动手操作的技能,发展观察能力、空间观念和思维的灵活性。

3、利用七巧板组合图形,并求出面积。教学重、难点:用割补法求组合图形的面积

小剪刀一把

长方形纸若干张

一、剪纸中得出组合图形的概念

师:大家跟我一起拿出一张长方形纸片:你能用一刀剪出两个其他图形吗?动手试试。(生剪师巡视,主要分清把长方形剪成两个基本图形或一个基本图形和一个不规则图形的同学。)

汇报:我把长方形分成了一个三角形和梯形?(说面积公式)

我把长方形分成了一个三角形和?(说不清楚是什么图形)师展示这个图形:

(一个长方形的角落剪去一个三角形)师:这个图形叫什么图形呢?

方案1:生自己回答:这是一个长方形和梯形组成的。

师:哦!你是怎么分的?还可以怎么分?(让学生动手折一折)

方案2:生不能回答,师提示:我们刚才把一个长方形分成了

一个三角形和一个梯形,还把它分成了两个长方形,还有?那这个图形,我们可以把它分成我们已经学过的图形吗?(生回答,并折给大家看)

最后把图形粘贴在黑板上得出:像这样由几个基本图形组成的,我们把它叫作组合图形,这节课我们重点就来研究组合图形的面积(板书组合图形的面积)

二、求组合图形的面积

1、重点突破

师:如果老师临时给这个组合图形的边标上数据,(边说边根据图形的长短标上数据)你能求出这个组合图形的面积吗?自己动手算一算,有困难的可以请教同桌和老师。

展示学生的做法,并请他说说思考过程。

师:如果要你求这个组合图形的面积,你可以怎样求?

生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来?师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)

师:还有其他方法吗?

(生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你是吗启发吗?(得出用长方形面积减去三角形的面积)板书:贴+写

师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)

2、基本练习

老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?(汇报)

在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。

3、实践活动

师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?

出示队旗:其实,我们的中队旗就是一个组合图形。

(1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答

(2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?

(3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)

用你认为简单的方法进行计算。先做好的小组上来板书。

反馈:你们是怎么思考的?

师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!

三、四人小组

利用手中的七巧板来拼出各种图案来,并求出你拼出的图案的面积。四通过这节课的学习,你有什么收获?

希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。

教学中我充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。在探索组合图形面积的过程中,注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,利用已有的知识解决问题,达到了良好的教学效果。

组合图形的面积教学设计人教版 组合图形的面积教学设计及设计意图篇六

1、知识与技能:使学生理解组合图形的含义,理解并掌握组合图形的计算方法,并能正确地计算组合图形的面积,并能运用所学的知识,解决生活中有关组合图形面积的实际问题。

2、过程与方法:自主探究、合作交流。让学生在自主探索的基础上进行合作交流,培养学生的观察能力、动手操作能力和逻辑思维能力。

3、情感态度与价值观:结合具体的题例,使学生感受到计算组合图形面积的必要性,产生积极的数学学习情感。

1、教学重点:学生能够通过自己的动手操作,掌握用割、补法求组合图形面积的计算方法。

2、教学难点:割补后找出相应的计算数据解决问题。教学准备:各种基本图形若干、学生作业纸、投影

1、我们以前学习了哪些基本的平面图形?

2、口答:说出每个图形的面积算式。

3、引入:课件展示用基本图形拼成的火箭、鱼的图形,从而引出组合图形的含义。

4、出示课题:组合图形的面积

1、动画展示生活中的组合图形,让学生感知数学来源于生活。

2、完成任务一:小华家新买了房子,计划在客厅铺地板,请你算一算他家要买多大面积的地板。

3、小组合作探索算法后派学生代表上台展示算法。

4、归纳算法

师:通过刚才的讨论与汇报,你认为应该怎么计算组合图形的面积,都有一些什么方法?

师引导学生认识:计算组合图形的面积主要可以采用“分割”与“添补”(结合黑板上面的解法进行归纳)的方法进行计算。

5、运用刚刚学到的这两种算组合图形面积的计算方法完成任务二

20cm26cm

a、小组合作完成

b、派代表上台汇报

6、独立完成任务三

师:通过本节课的学习,你学会了什么?(组合图形的面积)组合图形的面积是怎么计算的,用的是什么方法?(分割法、添补法)不管我们是用分割法还是添补法来计算组合图形的面积,其实我们最后还是要把问题变得(简单)。

推荐访问: