人教版小学数学级下册教案(九篇)

时间:2023-05-18 18:26:05 来源:网友投稿

下面是小编为大家整理的人教版小学数学级下册教案(九篇),供大家参考。

人教版小学数学级下册教案(九篇)

作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

人教版小学数学级下册教案篇一

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的`3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版小学数学级下册教案篇二

教学要求:

1、使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算与表格填写。

2、进一步培养学生观察、分析的能力。

3、通过制统计表,培养学生认真、仔细的良好习惯。

教学过程:

1、讲述练习内容

上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。

2、复习

让学生观察教材52页例1统计表提问:制一张合格的统计表的步骤是什么?(要求边看书边讨论,然后回答)

制复式统计表的步骤:

(1)设计“表头”

(2)定纵横栏目各需几格

(3)画表

(4)填写数据(包括总计、合计)

(5)写上名称、制表日期

3、巩固练习

在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。

方法:指导做题,让学生研究后再制表

(1)提问:“各年级”和“全年级”各表示什么意思?

(2)教师巡视指导,然后让学生结合题目说一说制表的步骤。

4、综合练习

(1)完成教材练习十一第5题。

方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。

(2)完成教材练习十一第4题。

方法:要求学生认真审题,抓住关键词语,弄清数量关系,正确列出算式,准确计算。在做题时一定要注意差后,发现普通的问题要统一纠正。

5、深化练习

练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。

教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是什么意思?学生试做后讲评。

6、全课总结

有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要,同学们一定要牢牢记住。

7、作业(补充)

人教版小学数学级下册教案篇三

一、教学内容

这一册教材包括下面一些内容:负数、圆柱与圆锥、比例、统计、数学广角、整理和复习等。

教学重点:百分数的www.应用、圆柱的侧面积和表面积的计较方法、圆柱和圆锥的体积计较方法、比例的意义和基本性质、正比例和反比例、扇形统计图、转化的解题策略以及总复习的四个板块的系列内容。

教学难点:圆柱和圆锥体积计较方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、众数和中位数平均数、解题策略的矫捷运用。

二、教学目标

这一册教材的教学目标是让学生:

1、领会负数的意义,会用负数表示一些日常糊口中的问题。

2、理解比例的意义和基本性质,会解比例,理解正比例和反比例的意义,可以或许判断两种量是否成正比例或反比例,会用比例知识解决比较简单的现实问题;
能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并能根据其中一个量的值估量另一个量的值。

3、履历对“抽屉原理”的探究过程,初步领会“抽屉原理”,会用“抽屉原理”解决简单的现实问题,发展分析、推理的能力。

4、认识圆柱、圆锥的特征,会计较圆柱的表面积和圆柱、圆锥的体积。

5、体味学习数学的乐趣,提高学习数学的乐趣,建立学好数学的信心。

6、履历从现实糊口中发现问题、提出问题、解决问题的过程,体味数学在日常糊口中的作用,初步形成综合运用数学知识解决问题的能力。

三、教材分析

在数与代数方面,这一册教材安排了负数和比例两个单元。连系糊口实例使学生初步认识负数,领会负数在现实糊口中的应用。比例的教学,使学心理解比例、正比例和反比例的概念,会解比例和用比例知识解决问题。

在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生通过对圆柱、圆锥特征和有关知识的摸索与学习,掌握有关圆柱表面积,圆柱、圆锥体积计较的基本方法,促进空间观念的进一步发展。

在统计方面,本册教材安排了有关数据可能产生误导的内容。通过简单事例,使学生认识到利用统计图表虽便于作出判断或预测,但如不认真分析也有可能获得不准确的信息导致错误判断或预测,明白对统计数据进行认真、客观、全面的分析的重要性。

在用数学解决问题方面,教材一方面连系圆柱与圆锥、比例、统计等知识的学习,教学用所学的知识解决糊口中的简单问题;
另一方面安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等勾当,履历探究“抽屉原理”的过程,体味若何对一些简单的现实问题“模子化”,从而学习用“抽屉原理”加以解决,感受数学的魅力,发展学生解决问题的能力。

本册教材根据学生所学习的数学知识和糊口经验,安排了多个数学综合应用的实践勾当,让学生通过小组合作的探究勾当或有现实背景的勾当,运用所学知识解决问题,体味摸索的乐趣和数学的现实应用,感受用数学的愉悦,培育学生的数学应用意识和实践能力。

整理和复习单元是在完成小学数学的全数教学内容之后,引导学生对所学内容进行一次系统的、全面的回顾与整理,这是小学数学教学的一个重要环节。通过整理和复习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生完美思维中的数学认知结构,为初中的数学学习打下良好的基础;
同时进一步提高学生综合运用所学知识分析问题和解决问题的能力。

四、学情分析

本班共有学生29人,大部分学生对数学有上进心;
有些学生的学习立场还需不断规矩;
有部分学生自觉性不够,上课注意力不集中;
不能及时完成功课等;
还有个别学生(胡志强、裴玉琴、陈建宏)基础知识掌握不够扎实,学习数学有很大坚苦。所以在新的学期里,在规矩学生学习立场的同时,应加强培育他们的各种学习数学的能力,利用小组会商的学习体例,使学生在会商中人人参与,各抒己见,互相开导, 自己找出解决问题的方法,体验学习数学的欢愉。

五、教学方法:

教学方法:

1、创设愉悦的教学情境,激发学生学习的乐趣。提倡学法的多样性,关注学生的小我体验。

2、在集体备课基础上,还应同年级教员互换听课,及时反思,真正体味教学设计意图,提高驾驭讲堂的能力。教师应转变观念,采用“激励性、自主性、创造性”教学策略,以问题为线索,恰当运用教材、媒体、现实材料突破重点、难点,变多讲多练,为精讲精练,真正实现师生互动、生生互动,从而调动学生积极主动学习,提高教与学的效益。

3、不增减课程和课时,不提高要求,不购买其他复习资料,不留机械、重复、奖惩性功课和功课总量不跨越规定时间,讲堂训练形式的多样化,重视一题多解,从不同角度解决问题。

4、加强基础知识的教学,使学生切实掌握好这些基础知识。本学期要以新的教学理念,为学生的持续发展供给丰富的教学资源和空间。要充分发挥教材的优势,在教学过程中,亲近数学与糊口的联系,确立学生在学习中的主体地位,创设愉悦、开放式的教学情境,使学生在愉悦、开放式的教学情境中满足个性化学习需求,从而达到掌握基础知识基本技术,培育学生立异意识和实践能力的目标。

5、在教学中注意采用开放式教学,培育学生根据具体情境选择恰当方法解决现实问题的意识。如通过一题多解、一题多变、一题多问、一题多编等路子,拓宽学生的知识面,沟通知识之间的内在联系,培育学生的应变能力。

6、练习的安排,要由浅入深,体现条理性。对不同的学生,要有不同的要乞降练习,对优生、学困生都要体现有所指导。增强数学实践勾当,让学生认识数学知识与现实糊口的关系,使学生感到糊口中时时处处有数学,用数学的现实意义来诱发和培育学生热爱数学的情感。

7、加强对家庭教育的指导。引导家长遵循教育规律和学生身心发展的规律、科学育人。引导学生正确看待成功与失败,勇敢战胜学习和糊口中的坚苦,做学习和糊口的强者。

学习体例:

①预习教材,提出知识重点,自己是通过什么路子理解的,还有哪些疑问。

②通过查阅资料找出解决问题的方法。

③ 教师作为讲堂教学的指导者,以学生自主学习为主,主张探究式、体验式的学习方法,培育学生的脱手操作能力和发散思维能力。

④利用小组会商的学习体例,使学生在会商中人人参与,各抒己见,互相开导, 自己找出解决问题的方法,体验学习数学的欢愉。

六、课时安排

六年级下学期数学教学安排了60课时的教学内容,各部分教学内容讲讲课时大致安排如下,教师教学时可以根据本班具体环境恰当矫捷掌握。

人教版小学数学级下册教案篇四

例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。

例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。

例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。

1.通过学生观察、探索,使学生掌握数线段的方法。

2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。

3.培养学生归纳推理探索规律的能力。

引导学生发现规律,找到数线段的方法

教具学具:

多媒体课件

1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。

探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法

2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答

3.探究例7时,必须先让学生仔细读题,理解题意。

一、复习回顾,游戏设疑,激趣导入。

1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

新知学习

二、逐层探究,发现规律。

1.从简到繁,动态演示,经历连线过程。

人教版小学数学级下册教案篇五

1、 理解圆柱体积公式的推导过程,掌握计算公式。

2、 体会数学转化思想,培养学生探究意识恒文观察、操作、分析和概括能力,能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

3、 感受探索数学奥秘的乐趣,培养学习数学的积极情感,

教学重点:

掌握和运用圆柱体积计算公式

教学难点:

圆柱体积公式的推导过程

同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

出示学习目标:

理解圆柱体积公式的推导过程,掌握计算公式,体会数学转化思想。

能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

(一)猜想。

1、下面长方体、正方体和圆柱的底面积都相等,高也相等

(1)。长方体和正方体的体积相等吗?为什么?

(2)。猜一猜,圆柱的体积与长方体、正方体 的体积相等吗?用什么办法验证呢?

2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]

3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

(二)操作验证。

1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

在操作时,学生分组边操作边讨论以下问题:

①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

?。拼成的近似长方体的高与原来的圆柱的高有什么关系?

2、小组代表汇报

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

3、电脑演示操作

(1)电脑演示圆柱体转化成长方体的过程:

仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?

动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?

(分的分数越多,拼成的图形就越接近长方体)

(2)根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高

v=sh

(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

闯关1.

1、填表。(课件)

2、一根圆柱形钢材,横截面的面积是50平方厘米,长是2米。它的体积是多少?

让学生试做,集体反馈。

闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(c)和高(h)呢?

学生讨论、交流、汇报。

小结:解决以上问题的关键是先求出什么?(生:底面积)

闯关3.

1、把一个圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的( ),它的底面积等于圆柱的( ),高就是( )的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于( )乘( ),用字母表示是( )。

2、圆柱底面半径为r厘米,高为h厘米,体积v=( )立方厘米

学生在练习本上独立完成,集体反馈。

3、我是小法官

1、正方体、长方体、圆柱体的底面积和高相等,他们体积也相等。( )

2、长方体、正方体、圆柱体的体积都 可以用底面积乘高的方法来计算。( )

3、圆柱体的底面积越大,它的 体积越大。( )

4、圆柱体的高越长,它的体积越大。( )

5、如果圆柱体的底面半径扩大2倍,高不变,体积也扩大2倍。( )

4、填空

1、一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积( )。

2、 一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是( )立方厘米。

拓展:把一根圆柱形木材横截成2段,表面积增加16平方厘米,它的底面积是多少平方厘米?如果这根木材长2.5米,它的体积是多少立方厘米?

学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

教科书第21页练习三第1-4题。

人教版小学数学级下册教案篇六

教学目的:

使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。

教具准备:

要求每个学生用教科书图样做一个圆锥的模型,并让学生收集一些圆锥形的实物,教师准备一个圆锥形物体,一块平板(或玻璃),一把直尺。

教学过程:

一、复习

1、提问:圆柱体积的计算公式是什么?

2、圆柱的特征是什么?

二、导入新课

教师:我们已经学习了圆柱的有关知识。请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它与圆柱有什么不一样?

三、新课

1、圆锥的认识。

让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆,等等。

教师指出:像这样的物体就叫做圆锥体,简称圆锥。这节课我们就来学习这种新的立体图形

板书谋题:圆锥

教师:大家门才认识了圆锥形的物体,我们把这些物体画在投影片上。

出示有圆锥形物体的投影片。

教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。

随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。

然后指出:这样得到的图形就是圆锥体的几何图形。

教师指出:圆锥有一个顶点,它的底面是一个圆。

然后在图上标出顶点,底面及其圆心o。

同时还要指出:我们所学的圆锥是直圆锥的简称。

接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)

让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。

教师顺着母线的方向演示。问:这条线是圆锥的高吗?

指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。

教师:圆锥的高到底有多少条呢?

引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。

然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。

2、小结。

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。

3、测量圆锥的高。

教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助—块平板来测量。

教师边演示边叙述测量过程:

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出乎板和底面之间的距离。

测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;
(2)读数时一定要读平板下沿与直尺交会处的数值。

4、教学圆锥侧面的展开图。

教师:圆锥的侧面是哪一部分?

教师展示圆锥模型,指名学生说出侧面部分。

教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形?

学生回答出圆柱的侧面展开图是长方形后,教师设问:那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?”

留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧面展开后是一个什么图形。

然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。

四、课堂练习

1、做“做一做”的题目。

让学生拿出课前准备好的模型纸样。先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。

2、做练习九的第1题。

让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。

3、做练习九的第2题。

人教版小学数学级下册教案篇七

教学目标

1、进一步加深对分数乘、除法应用题的数量关系和内在联系的认识。明确它们的相同点和不同点。

2、掌握分数乘、除法应用题的分析、解答方法。

教学重点

训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点。

教学难点

准确判断单位“1”,正确地解答分数应用题。

教学步骤

一、铺垫孕伏

(一)导入 :我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

(二)判断单位“1”。

1、鹅的只数是鸭的 。

2、甲的 是乙。

3、乙是甲的 。

4、男生人数的 相当于女生。

5、小齿轮的齿数占大齿轮的 。

(三)列式计算。

1.4是12的几分之几?

2.12的 是多少?

3、一个数的 是4,求这个数。

二、探究新知

(一)教学例3第(1)题

池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

1、读题并找出已知条件和问题

2、提问:应把谁看作单位“1”?是根据题中哪句话判断的?

3、画图。

4、列式解答

答:鹅的只数是鸭的 。

(二)教学例3第(2)、(3)题。

池塘里有12只鸭,鹅的只数是鸭的 。池塘里有多少只鹅?

池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

1、画图理解题意

2、列式解答

3、集体订正

(三)小结

这三道题有什么相同点和不同点?解题关键是什么?

1、结构上

相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

不同点:已知和未知不一样。

2、解题思路上

相同点:都要首先弄清谁作标准,把谁看作单位“1”;

不同点:根据已知、未知的变化,确定不同的解答方法。

解题关键是:正确分析题中的数量关系,明确谁作单位“1”。

教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别。我们在解

答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位“1”。这样才能提高解答分数应用题的能力。

三、全课小结

这节课我们进一步学习了分数乘、除法应用题,并进行了比较。解答时,要正确地判断单位“1”,从而确定解答方法。

四、巩固练习

(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 。商店运来蓝毛衣多少包?

(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 。商店运来红毛衣多少包?

五、课后作业

(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

(二)学校买了蓝墨水30瓶,红墨水24瓶。蓝墨水是红墨水的几倍?

(三)农场有小牛40头,是大牛头数的 。农场有大牛多少头?

六、板书设计

1、池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

4÷12=

答:鹅的只数是鸭的 。

2、池塘里有12只鸭,鹅的只数是鸭的 。池塘里有多少只鹅?

12× =4(只)

答:池塘里有4只鹅。

3、池塘里有4只鹅,正好是鸭的只数的 。池塘里有多少只鸭?

4÷ =12(只)

答:池塘里有12只鸭。

人教版小学数学级下册教案篇八

1、知识与技能 :使学生理解反比例的意义,并能正确判断成反比例的量。培养学生观察概括的能力和学习方法的迁移能力。

2、过程与方法 :经历反比例意义的探究过程,通过学生的讨论分析合作,使学生进一步认识事物之间的联系和发展变化的规律,体验观察比较,推理归纳的学习方法。

3、情感态度与价值观 :通过一系列富有探究性的问题,进一步渗透自主学习和与他人合作交流的意识和探究精神,激发学习数学的热情。

重点:理解反比例的意义、正反比例的比较。

难点:正确判断两个量是否成反比例

ppt课件

(一)、回忆旧知,引出新课。

1、复述回顾:

(1)、什么叫做成正比例的量?

(2) 判定两种量成正比例的关键是什么?

(3)、判定下面两种量是否成正比例?

a、轮船行驶的速度一定,行驶的路程和时间。

b、每小时织布的米数一定,织布总米数和时间。

c、当圆柱体的高度一定时,体积和底面积。

2、引出课题:这是我们上节课学习的内容——成正比例的量,今天我们继续学习这些常用的数量关系之间的一些特征。当圆柱体的体积一定时,底面积和高度又有什么态度呢? ﹙板书:成反比例的量﹚

(二)、自主学习,探索新知。

1、探究反比例的意义

今天老师给大家带来了一个实验,在实验之前,提出实验要求。

(1)、记录杯子里水的高度,把表格中补充完整。

(2)、观察水的高度是如何变化的?

教师播放实验。

水的高度是怎样随着底面积的变化而变化的?

3、观看实验记录单,回答三个问题。

①表格中有哪两种量?

② 水的高度是怎样随着底面积的变化而变化的?

③相对应的杯子的底面积和水的高度的乘积分别是多少?

教师据学生汇报说明:在水的高度和底面积这两种相关联的量中,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。相对应的两个数的乘积是一定的。像这样的两种量,叫做成反比例的量,它们的关系叫反比例关系。

4、课件展示反比例的意义,请学生回答判断两种量成反比例的关键是什么?

学生小组内讨论得出判断两种量成反比例的关键是有三个条件,1、两种相关联的量;
2、变化方向相反;
3、乘积一定。

3、说一说:生活中还有哪些量成反比例关系?

师:想一想在日常生活中,还有哪些量成正比例关系谁给我们来举个例子吧。

(1)学生自由举例。

(2)师讲述:日常生活和生产中有很多相关联的量,有的成反比例,有的相关联,但不成比例。判断两种相关联的量是否成反比例,要看这两个量的积是否一定,只有积一定,这两个量才成反比例

三、巩固练习。

(一)、基础练习

1、判断下面每题中的两种量是不是成正比例,并说明理由。

(1)轮船行驶的速度一定,行驶的路程和时间。

(2)每小时织布的米数一定,织布总米数和时间。

(3)当圆柱体的高度一定时,体积和底面积。

(1)、表格中有( )和( )两种相关联的量。

(2)、写出这两种量中相对应的两个数的积,并比较大小。

(3)、这个积表示( )。

(4)、表中的相关联的两种量成反比例吗?为什么?

2、判断下面每题中的两种量是不是成反比例,是“√ ”,不是“×”。

(1)煤的量一定,每天的烧煤量和能够烧的天数。

( )

(2)种子的总量一定,每公顷的播种量和播种的公顷数。

( )

(3)李叔叔从家到工厂,骑自行车的速度和所需的时间。

( )

(4)华容做12道数学题,做完的题和没有做的题。

( )

四、积极应用,拓展新知。

出示课件,正、反比例的例题,请学生比较,正、反比例的相同点、和不同点?把表格补充完整。

学生小组内讨论,得出答案。

五、拓展练习。

1、判断下面每题中的两种量成比例吗?并说明理由。

(1)、长方形的面积一定,它的长和宽。

( )

(2)、轮船行驶的速度一定,行驶的路程和时间。

( )

(3)、生产电视机的总台数一定,每天生产的台数和所用的天数。

( )

(4)、小麦每公顷的产量一定,小麦的公顷数和总产量。

( )

(5)、矿泉水瓶中喝掉的水和剩下的水。

( )

(6)、圆的半径和它的面积。

( )

(7)、铺地面积一定,方砖面积与所需块数。

( )

六、课堂小结。

通过这节课的学习,你有什么收获?想挑战一下自我吗?好!请同学们认真完成堂堂清练习题。

人教版小学数学级下册教案篇九

教学内容:

抽取游戏

教学目标:

1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:

抽取问题。

教学难点:

理解抽取问题的基本原理。

教学过程:

一、教学例

盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

1.猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2.实验活动。

(1) 一次摸出2个球,有几种情况?

结果:有可能摸出2个同色的球。

(2) 一次摸3个球,有几种情况?

结果:一定能摸出2个同色的球。

3.发现规律。

启发:摸出球的个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做

第1题。

(1) 独立思考,判断正误。

(2) 同学交流,说明理由。

第2题。

(1) 说一说至少取几个,你怎么知道呢?

(2) 如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习

完成课文练习十二第1、3题。

推荐访问:下册 人教版 小学数学 人教版小学数学级下册教案(九篇) 人教版小学数学级下册教案(九篇) 人教版小学数学下册教学计划