最新四年级数学下册人教版(合集)【精选推荐】

时间:2023-07-15 01:10:01 来源:网友投稿

下面是小编为大家整理的最新四年级数学下册人教版(合集)【精选推荐】,供大家参考。

最新四年级数学下册人教版(合集)【精选推荐】

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

四年级数学下册人教版篇一

1.结合生活中的例子,理解精确数和近似数的含义。

2.掌握用“四舍五入”的方法求一个数的近似数,学会用“四舍五入”的方法省略“万”或“亿”后面的尾数,求出它的近似数。

3.引导学生观察、体验数学与生活的密切联系,培养学生主动探究的精神和应用数学的意识。

教学重点:能正确判断生活中的近似数和精确数,会用“四舍五入”的方法求一个数的近似数。

教学难点:灵活运用“四舍五入”的方法求一个数的近似数。

教学准备:课件

教学过程:

一、谈话引入

师:我今年三十五岁了,度过了一万多个日日夜夜。

想一想:在老师介绍自己的这两个数字中,你认为哪个数字描述得更精确?为什么?

引导学生畅所欲言,在学生交流的过程中教师进行实时指导,引导学生得出:三十五岁更精确,一万多个日日夜夜是个近似(大概、大约)的数。

导入:今天这节课我们就一起来学习和近似数有关的知识。(板书课题)

二、交流共享

(一)认识近似数

1.课件出示教材第21页例题6情境图。

2.初步感知。

让学生读一读两个情境中的信息,联系情境中的内容想一想:如果让你把划线的四个数字分一分,你想怎样分?为什么?

学生独立思考后,教师组织交流。

3.加深理解。

(1)思考:你知道上面哪些数是近似数吗?

教师在学生思考、交流的基础上明确:220万和1902万是近似数;生活中一些事物的数量,有时不需要用精确的数表示,而只用一个与它比较接近的数来表示,这样的数是近似数。

(2)让学生结合具体例子说说生活中的近似数。

(二)求一个数的近似数

1.课件出示教材第21页例题7“2012年某市人口情况统计表”。

让学生观察表格中的数据,并读出这几个数。

2.借助直线理解找一个数的近似数的方法。

(1)教师出示一条直线:

38万 39万

(2)在直线上描出表示男性与女性人数的点。

提问:表示男性与女性人数的点大约在直线的什么位置?分别把它们描出来。

学生尝试在教材的直线上进行描数。

教师投影学生完成的结果:

38万 384204 386685 39万

(3)观察直线,探究找近似数的方法。

提问:观察直线上384204和386685这两个数,它们各接近多少万?

学生独立思考后,小组交流。教师巡视,了解学生的交流情况。

组织全班交流。

鼓励学生各抒己见,学生可能会有以下两种思考方法:

方法一:384204在385000的左边,接近38万;386685在385000的右边,接近39万。

方法二:384204千位上是4,比385000小,接近38万;386685千万位上是6,比385000大,接近39万。

教师对以上两种方法都应给予肯定。

3.介绍“四舍五入”的方法。

(1)教师介绍用“四舍五入”的方法求一个数的近似数。

用“四舍五入”的方法求一个数的近似数,要把这个数按要求保留到某一位,并把它后面的尾数省略。尾数的位上的数如果是4或比4小,就把尾数的各位都改写成0;如果是5或比5大,要在尾数的前一位加1,再把尾数的各位改写成0。

(2)用“四舍五入”的方法求出男性和女性人数的近似数。

先让学生独立写,再组织汇报交流,交流时让学生说说是怎样运用“四舍五入”的方法来求它们的近似数的。

教师根据学生汇报板书:

384204≈380000

386685≈390000

4.完成教材第22页“试一试”。

(1)课件出示题目。

(2)让学生独立思考后,在小组内交流汇报。

(3)提问:怎样将一个数改写成用“万”或“亿”作单位的近似数?

学生交流讨论,教师归纳。

三、反馈完善

1.完成教材第22页“练一练”。

这道题是结合生活情境来区分精确数和近似数。其中,56785和1617是准确数,4600000000、2000000和3000000是近似数。

2.完成教材第24页“练习四”第5~10题。

学生独立完成后集体汇报。

四、反思总结

四年级数学下册人教版篇二

教学目标:

1.掌握多位数的大小比较方法,能正确比较多位数的大小。

2.掌握整万数和整亿数改写成用“万”或“亿”作单位的方法,能正确地进行改写。

3.培养学生知识迁移的能力,渗透优化的数学思想。

教学重点:掌握多位数的大小比较方法和改写的方法。

教学难点:灵活运用知识解决数学问题。

教学准备:课件

教学过程:

一、谈话引入

1.课件出示下列两个数:

400000 4000000

(1)提问:你能读出这两个数吗?分别让学生读一读。

(2)解决问题:十万位上的“4”表示什么?百万位上的“4”又表示什么?

师:为什么同样的数字“4”,在不同的数位上所表示的大小是不一样的?

启发学生思考,并明确:不同数位上的数表示不同的意义。

(3)比一比,这两个数哪个大哪个小?指名回答。

2.在○里填上“>”“<”或“=”。

988○1000 765○489 566○581

反馈时让学生说说比较万以内数的大小的方法。

3.导入:刚才,我们对于万以内数的大小的比较方法进行了回顾,下面我们来看一看,这种方法对万以上的多位数是否也适用?这就是这节课要学习的内容。(板书课题)

二、交流共享

1.课件出示教材第20页例题5。

让学生观察表格,说一说,这三年出版社图书的种类各是多少?

指名读一读,得出信息。

2.独立思考,完成排序。

提问:这三年出版的图书数量各不相同,哪一年出版的种类多?哪一年出版的种类少?请同学们按从大到小的顺序排列。

学生独立思考后进行比较和排序。教师巡视,进行个别指导。

3.小组交流。

师:请同学们把自己比较的方法在小组内进行交流,看看小组内同学之间有没有不同的比较方法,谁的方法更加简便。

学生在小组内进行交流。教师巡视,参与个别小组交流,了解学生的交流情况。

4.组织全班交流汇报。

学生可能会有以下两种比较方法,如果没有,教师可以进行必要引导。

方法一:370000>300000>250000

提问:你是怎么想的?

引导学生得出:先看三个数的位数是否相同,三个数都是六位数;再比较位,位大的数就大。

追问:如果位相同,又该怎么比呢?

生答:就比较第二位,第二位大的数就大……

方法二:250000=25万,300000=30万,370000=37万,37>30>25,37万>30万>25万

5.数的改写。

(1)引导学生关注数的改写过程。

提问:第二种方法可行吗?在比较这三个数的大小时,要先做什么?(将三个数改写成用“万”作单位的数)

追问:什么样的数可以改写成用“万”作单位的数呢?

(2)教师引导学生观察两种比较方法,提问:两种比较的方法相同吗?哪一种方法更简便?

引导学生通过观察思考,领悟到:将这三个数先改写成用“万”作单位后再比较更简便。

(3)小组讨论:怎样将一个整万或整亿的数改写成用“万”或“亿”作单位?

组织交流汇报:把一个整万的数改写成用“万”作单位的数,只要把这个数末尾的4个0去掉,在后面加上一个“万”字;把一个整亿的数改写成用“亿”作单位的数,只要把这个数末尾的8个0去掉,在后面加上一个“亿”字。

(4)即时练习。

课件出示题目:你能先把这三年各类图书的总印数改写成用“亿”作单位的数,再把它们按从大到小的顺序排列吗?

6300000000=( )亿

7000000000=( )亿

7700000000=( )亿

( )亿>( )亿>( )亿

(5)小结:在日常生活中,为了方便,常常把整万或整亿的数改写成用“万”或“亿”作单位的数。

三、反馈完善

1.完成教材第21页“练一练”第1题。

先组织学生对这几个数进行分级,再读一读,最后再在教材上进行改写。

2.完成教材第21页“练一练”第2题。

先比较大小,再说说大小比较的方法。

3.完成教材第23页“练习四”第1~4题。

学生独立完成后,组织讲评、订正。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

四年级数学下册人教版篇三

教学目标:

1.理解并掌握“单价×数量=总价、速度×时间=路程”这两种数量关系,并能运用数量关系解决实际问题。

2.初步培养学生运用数学术语的能力,发展学生分析、比较、归纳、抽象、概括的能力。

3.感受数学知识与生活的密切联系,在解决问题的过程中感受三位数乘两位数笔算方法的应用价值。

教学重点:理解并掌握单价、数量和总价及速度、时间和路程之间的关系。

教学难点:运用数学术语概括、表达数量关系,并能在解决问题的过程中加以应用。

教学准备:课件

教学过程:

一、谈话引入

1.回顾生活中的常见问题。(课件出示题目)

(1)每个书包50元,4个书包多少钱?

(2)一列动车每小时行200千米,4小时行多少千米?

(3)李师傅每天生产15个零件,他6天可以生产多少个零件?

指名学生口头列式,师生交流反馈。

2.导入新课。

在日常生活中,存在着许许多多的数量关系,弄清楚这些常见的数量关系,对于我们分析问题和解决问题都有很大帮助。这节课我们就一起来学习生活中常见的数量关系。(板书课题)

二、交流共享

(一)教学单价、数量和总价的关系。

1.课件出示教材第28页例题2情境图。

学生观察情境图,收集情境中的信息:钢笔每支12元,练习本每本3元;要买4支钢笔和5本练习本。

2.理解“单价”“数量”和“总价”。

(1)提问:什么是单价?什么是数量?什么是总价?

(2)追问:每种商品的单价各是多少?购买的数量呢?

(3)介绍单价的读法和写法。

(4)认识总价。

引导思考:根据题目中购买钢笔的情况,我们可以求什么呢?

指出:“4支钢笔一共多少钱”指的就是4支钢笔的总价。

3.理解单价、数量和总价的数量关系。

(1)课件出示下表:

单 价 数 量 总 价

钢笔 ( )元/支 ( )支 ( )元

练习本 ( )元/本 ( )本 ( )元

让学生先填写商品的单价和购买的数量,再分别求出总价。教师巡视,发现错误及时纠正。

(2)交流讨论:总价与单价、数量之间有什么关系?

教师结合学生的汇报情况进行板书:

总价=单价×数量

(3)思考:已知总价和单价,可以求什么?怎样求?已知总价和数量呢?

师生交流后板书:

数量=总价÷单价

单价=总价÷数量

4.师生共同小结。

根据单价、数量和总价三个量的关系,只要知道两个量,就可以求出第三个量。我们在记这一组数量关系式时,只要记住“总价=单价×数量”,就可以根据乘法算式各部分之间的关系,得出“数量=总价÷单价”和“单价=总价÷数量”。

(二)教学速度、时间和路程的关系。

1.课件出示教材第28页例题3情境图。

引导学生读题,收集情境图中的信息。

2.理解“速度”“路程”和“时间”的含义。

(1)提问:情境中给出的两条信息可以称为什么?

(2)交流速度的写法和读法。

先让学生自己阅读教材,再进行交流。

(3)认识时间和路程。

提问:行程问题中除了速度之外,还有哪些数量呢?

指名说说对时间和路程的理解。

3.探究速度、路程和时间的数量关系。

(1)课件出示下表:

单 价 数 量 总 价

列车 ( )千米/时 ( )时 ( )千米

自行车 ( )米/分 ( )分 ( )米

学生先填写和谐号列车与李冬骑自行车的速度,再分别求出行驶的路程。教师巡视,发现错误及时纠正。

(2)交流讨论:路程与速度、时间之间有什么关系?教师结合学生的汇报情况进行板书:

路程=速度×时间

(3)思考:已知路程和速度,可以求什么?怎样求?已知路程和时间呢?

师生交流后板书:

时间=路程÷速度

速度=路程÷时间

4.小结。

三、反馈完善

1.完成教材第29页“练一练”第1~3题。

第1题:练习单价和速度的写法。

第2题:运用例题3的数量关系解决求路程的问题。

第3题:运用例题2的数量关系解决求总价的问题。

学生独立完成并集体订正。

2.完成教材第30~31页“练习五”第8、9题。

第8题:已知路程和时间求速度的问题。

第9题:已知总价和数量求单价的问题。

学生独立完成,汇报时让学生说说题中的数量关系各是什么。

四、反思总结

四年级数学下册人教版篇四

教学目标:

1. 知识目标:在长方体、正方体的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

2. 能力目标:经历探究测量不规则物体体积方法的过程,体验“等积变形”的转化过程。获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决能力。

3. 情感目标:感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

教学过程:

一、复习导入

1、复习长(正)方体的体积,体积和容积单位的换算。

2、听故事,曹冲称象(大象的质量转换为石块的质量)\阿基米德的故事(皇冠的体积转换成水的体积)。故事对于我们的这节课学习是不是会有所帮助,有所启发呢?

3、观察(石块\土豆)的形状,与长方体或正方体比较引出不规则物体(并板书)。

故事中的皇冠也是不规则物体吗?

石块和土豆再比较,哪个物体更不规则,指出今天我们就来测量石块的体积。(板书)

二、实验操作,测量石块体积。

1. 拿出桌子下面的测量工具,根据给出的测量工具,各小组想好测量方案,该做哪些工作(分工)。分工协作:

方案一 ,取水,测量底面的长和宽,以及水面的高度,放入石块后再测量水面到达的高度,用底面积乘高度的差就是石块的体积。(注意点:水的量应适中,不要太少也不能太多,刚好能让石块浸没而升高的水又不至于溢出就可以了。)

方案二,取水,在空器中倒满水,然后把石块慢慢放入水中,再将溢出的水倒进量杯中量出水的体积

2. 小组汇报各自做法,老师边听学生汇报边板书。(适量的水:升高部分水的体积相当于石块的体积)(加满的水:溢出的水的体积相当于石块的体积。)

真不错,大家测出了石块的体积,请把水倒回水桶,下面小组交换一下测量工具,重新测量石块的体积,来验证一下测量的结果是否大致相同。

3. 除了上面的两种方案,还有其他的测量方案吗?说说看, 我们班是不是会出现曹冲第二呢?

预设一:小物体---直接有量杯测出体积。

预设二:把石块先放入容器,往容器里加入水,直到水高过石块,测量水的高度,把石块捞出,再次测量水的高度,把容器的底面积乘两次的高度差就是石块的体积。

预设三:当装的水过高时,我们可以把升高的这部分水的体积加水溢出的水的体积也能求出石块的体积。

预设四:有称重的办法求石块的体积,把我们量出的石块称一称,看重多少,再根据这对数据求出任意大小石块的体积。

预设五:用橡皮泥代替水做也可,把石块放入长方体空器,往容器内塞入橡皮泥,直到塞满为止,取出石块,再塞入橡皮泥(压平,测量橡皮泥的高度,把底面积乘容器高度与橡皮泥高度差就是石块的体积。……

三、巩固提高

今天大家的表现真不错,有些方案老师也没能想到。学有所用,学以致用,我们来看看小黑板的题目怎么做。

1. 一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面升高了0.2分米,这个土豆的体积是多少?(生独立完成。)

2. 测量一颗跳珠的体积。

数25粒跳珠,放入一个盛有一定量水的量杯中,根据水面升高的情况测量出水的体积,再算出一颗跳珠的体积。(学生实验并计算出体积)

四、总结提高

通过今天的学习,你有什么收获?(我学会了求石块的体积,我学会了怎样求不规则物体的体积,我学会了把一个物体转换成另一个物体来解决问题的方法。)

四年级数学下册人教版篇五

教学内容:

本节内容属北师大版小学数学五年级下册第四单元“长方体(二)”最后一节的内容:有趣的测量(求不规则物体的体积)。

教材分析:

本节课是在学生已经掌握了长方体和正方体的认识,长方体和正方体的表面积、体积的知识,了解了容积的内容的基础上呈现的。要使学生通过观察、比较,掌握不规则物体的体积的求法,拓展了学生的知识面,渗透了转化的思想。

学情分析:

本班级学生,大部分学习认真、踏实、自觉,基础扎实,好学上进,部分男生活泼好动,爱思考。对于探索数学问题有着极其浓厚的兴趣,喜欢自己动手解决问题。在他们身上还明显地存在着儿童的天性,好动、好奇等。对于本单元的知识,大部分学生掌握得比较扎实。

教学目标:

1、经历测量芒果、石头、水瓶的体积的实验过程,探索不规则物体体积的测量方法,渗透转化的思想。

2、握不规则物体的测量方法,并能测量不规则物体的体积。

3、践与探索过程中,尝试用多种方法解决实际问题,提高灵活解决实际问题的能力。

教学重点:

让学生掌握不规则物体体积的测量方法。

教学难点:

灵活运用“排水法”和“溢出法”解决实际问题。

教具准备:

魔方、芒果、圆柱体量杯、长方体水槽、石块、苹果醋若干瓶

教学过程:

一、 导入

1、同学们,周末老师在整理房间的时候,从柜子里发现了一个魔方,我特别喜欢。

从数学的角度来讲,魔方是一个什么样的物体?(正方体)

怎样求出这个正方体的体积呢?(板书:v正=a3)

它的棱长是10cm,体积是多少呢?(1000cm3)

2、除了正方体,你还会求哪些立体图形的体积?(板书:v长=abh)

3、像长方体和正方体这样,都能够直接通过公式求出它们的体积,这样的物体,我们把它们叫做“规则物体”。(板书:规则物体)

4、现在请同学们再观察老师手中的魔方,它还是正方体吗?(旋转一下)那它是什么形状的物体呢?

像这样,无法用语言准确地说出具体形状的一类物体,在我们的生活中随处可见,我们称它们为“不规则物体”。(板书:不)

5、现在这个魔方的体积是多少呢?(还是1000cm3)你是怎么想的?(板书:转化)

【设计意图:我用正方体魔方引入,把本节课主要用到的数学思想渗透给学生,为后面的实验做铺垫,同时又可以激发学生学习的积极性。】

6、魔方是一个比较特殊的物体。再看,现在老师手中拿的这个芒果也是一个不规则的物体,我们能直接把它转化成规则的物体吗?

那它的体积是多少,又该怎样求呢?

这节课,我们就通过有趣的测量,共同来研究不规则物体的体积。

二、新授

(一)测量芒果的体积

1、你想怎样测这个芒果的体积呢?(学生汇报)

2、桌面上,老师为每个小组准备了两种测量工具:量杯和一个长方体容器。

你认为选择哪一种测量工具,能够很快地求出芒果的体积?为什么?(选择量杯,因为它有刻度)

3、这样做确实能比较快的求出芒果的体积,你来看(ppt演示)

量杯中装有一部分水,正好是300ml,这300ml指的是什么?(水的体积)

仔细观察,将芒果放入水中后,水面发生了怎样的变化?为什么水面会上升呢?那么,现在的400ml指的是什么?(水和芒果的体积)

现在,你知道芒果的体积是多少吗?

100是芒果的体积,它也是什么的体积?(上升的水的体积)

4、在刚才的实验中,我们借助量杯完成了一次转化。是将什么转化成了什么呢?(将芒果的体积转化成了上升的水的体积,也可以说是将不规则的芒果转化成了规则的圆柱体)

5、像刚才这样测量不规则物体体积的方法,我们把它叫做“排水法”。

【设计意图:教师引导学生观察第一个实验:用量杯和水试一试、测一测芒果的体积。学生通过讨论、交流观察等一系列的活动,让学生初步的明白应用转化的思想,可以把不规则物体的体积转化为上升部分的水的体积,也就是测不规则物体体积的基本方法。】

(二)测量石头的体积

1、现在老师也想进行一次测量,我想测的是这块石头的体积。

我应该选择什么工具来测量呢?为什么?(选择长方体容器,因为石头太大了)

2、用这个长方体容器怎样求出这块石头的体积呢?在小组内和你的同伴说一说。(讨论后,学生汇报)

3、在测量的时候应该注意什么?(强调:要从里面测量)

出示数据:长25cm,宽18cm,水面高度8cm。慢慢将石头放入水中,观察水面发生了什么变化?为什么?

这样放行不行(竖着)?为什么?(石头没有完全浸入水中)

石头已经完全浸入水中,此时水面的高度是10cm

4、你能根据屏幕上显示的数据计算出这块石头的体积吗?(学生动笔计算)

5、刚才,在我们的共同努力下,测得了这块石头的体积。

在这次实验中,我们又完成了一次转化,是将什么转化成了什么?(将石头的体积转化成了上升的水的体积,也可以说是将不规则的石头转化成了规则的长方体)

【设计意图:学生有了第一个实验的基础,教师调换实验用品进行第二个实验,把量杯换为长方体容器来进一步探索求不规则物体的体积。学生有了第一个实验的基础,会很容易的探索出把不规则物体的体积转化为可计算的长方体的体积,从而突破本节课的重难点。在这一环节中教师适时强调,测量时要把石头完全浸入水中,才能应用转化的思想求体积。】

6、你还有其他的方法能够测量出这块石头的体积吗?(出示“溢出法”和“排水法”的逆运用)

【设计意图:教师引导学生思考其他测量不规则物体体积的方法,从而让学生明白解决问题的方法的多样性。】

7、其实,早在2000多年前,大物理学家阿基米德就曾经用过刚才同学们说到的方法帮助国王解决了一个难题,出示“数学万花筒”,学生读。

(三)测量苹果醋瓶的体积

1、现在你们想不想亲自测量一下不规则物体的体积?

机会就在眼前,每个小组的桌面上都有一瓶苹果醋。在大家动手之前,请你先猜猜看“这个瓶子的体积是多少?(净含量:260ml)

2、现在就动手来验证一下吧。将记录填写在实验报告单中。

【设计意图:新数学课程标准中强调,教学中“做”比“知道”更重要。数学活动课要把握好实践活动的时机,凡是能让学生自己设计的,就让学生亲自去发挥;凡是能让学生自己去做的,就让学生亲自去动手。】

3、在刚才的实验中,我们又完成了一次转化,谁能来说一说?

(四)总结

通过这几次的实验,我们发现:不管是“排水法”还是“溢出法”,实际上都是在完成一次转化,是将什么转化成什么呢?(将不规则物体转化成规则物体)

【设计意图:使学生明确“转化”思想的实质。】

三、质疑

看书 页,对于今天我们学习的知识,你还有什么不清楚的地方?

四、课堂练习

(一)填空

1、一个量杯水面刻度200ml,放入一个零件后,量杯水面刻度450ml,这个零件的体积是( )。

2、一个长方体容器装满水,底面长8dm,宽5dm,高3dm,放入一个不规则物体后,溢出30升的水,这个不规则物体的体积是( )。

3、一个长方体容器,从里面量长3分米,宽2分米,高5分米,里面装有水,水深3分米,如果把一块小长方体放入水中,小长方体的长是10厘米,宽8厘米,高5厘米,上升的水的体积是( )。

【练习目的:强化“转化”思想的实质。】

(二)解决问题

第一组

1、一个长方体容器,底面长4dm,宽2dm,放入一个石块后水面上升了0.5dm,这个石块的体积是多少立方分米?

2、一个正方体的容器,棱长20厘米,现装有深度为5厘米的水。在放入一个物体后,水面上升到8厘米,放入物体的体积是多少立方厘米?

【练习目的:通过对比练习,由直观到抽象,激发了学生的学习兴趣,提高了教学效率与效益。】

第二组

1、一个长方体容器,长20厘米,宽15厘米,高10厘米。将一块铁块放入容器中,装满水,再将铁块取出,这时容器中的水面高度是6厘米,这块铁块的体积有多大?★★

2、一个正方体容器装满水,当放入一个长方体后,容器中溢出了48升水,已知长方体长8分米,宽2分米,求高是多少厘米。★★★

3、一个棱长为15厘米的正方体容器内水深8厘米,浸入一个不规则的钢块后,水面上升到距容器口3厘米处,这个钢块的体积是多少? ★★★★★

【练习目的:由浅入深,层层深入,采用小组合作的形式,让学生参与到教学全过程,增强学生的主人翁意识。】

五、全课小结

1、通过这节课的学习,你有什么收获?(学生汇报)

2、生活中有许多不规则的物体,我们可以把它们转化成规则的物体来计算出体积。在解决数学问题的时候,往往需要我们用一种变通的方法去思考

3、拓展练习:那么,你能想办法测出一粒黄豆的体积吗?(学生汇报)

一粒黄豆非常小,把它放入水中,我们很难看出水面的升高情况,也就很难算出它的体积。我们可以先测量出一定数量的黄豆的体积,再除以黄豆的数量,就能得出一粒黄豆的体积了。

<

推荐访问:下册 合集 人教版 最新四年级数学下册人教版(合集) 最新四年级数学下册人教版(5篇) 最新人教版小学四年级数学下册