等差数列教学设计【完整版】

时间:2023-07-23 09:55:03 来源:网友投稿

等差数列教学设计第1篇[教学目标]1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。2.过程与方法目标:让学生下面是小编为大家整理的等差数列教学设计,供大家参考。

等差数列教学设计

等差数列教学设计 第1篇

[教学目标]

1.知识与技能目标:掌握等差数列的概念;
理解等差数列的通项公式的推导过程;
了解等差数列的函数特征;
能用等差数列的通项公式解决相应的一些问题。

2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;
使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

2.教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一.课题引入

创设情境

引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

(1)、在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:

1682,1758,1834,1910,1986,( )

你能预测出下次观测到哈雷慧星的大致时间吗?判断的依据是什么呢?

(2)、通常情况下,从地面到11km的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。

(3) 1,4,7,10,( ),16,…

(4) 2,0,-2,-4,-6,( ),…

它们共同的规律是?

从第二项起,每一项与前一项的差等于同一个常数。

我们把有这一特点的数列叫做等差数列。

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

2、等差数列定义的数学表达式:

试一试:它们是等差数列吗?

(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…

(2) 5,5,5,5,5,5,…

(3) -1,-3,-5,-7,-9,…

(4) 数列{an},若an+1-an=3

3、等差中顶定义

在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:

(1)、2 ,( ) ,4 (2)、-12,( ) ,0 ( 3 ) a ,( ),b

如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做a与b的等差中项。(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列 首项是 ,公差是 ,那么这个等差数列 如何表示? 呢?

根据等差数列的定义可得:

, , ,…。

所以:

……

由此得 ,

因此等差数列的通项公式就是: ,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

……

将以上 -1个式子相加得等差数列的通项公式就是: ,

三、应用与探索

例1、(1) 求等差数列8,5,2,…,的第20项。

(2) 等差数列 -5,-9,-13,…,的第几项是 –401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得 成立,实质上是要求方程 的正整数解。

例2、在等差数列中,已知 =10, =31,求首项 与公差d.

解:由 ,得 。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1. 等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1,则a =( )。

A. 1 B. -1 C. -2 D. 22.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。四、小结

1.等差数列的通项公式:

公差 ;

2. 等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3. 判断一个数列是否为等差数列只需看 是否为常数即可;

4. 利用从特殊到一般的思维去发现数学系规律或解决数学问题.

五、作业:

1、必做题:课本第40页 习题2.2 第1,3,5题

2、选做题:如何以最快的速度求:1+2+3++100=

高斯说:“请同学们预习下一节:等差数列的前N项和。”

等差数列教学设计 第2篇

教学目标:

(1)理解等差数列的概念,掌握等差数列的通项公式;

(2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;

(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;
通过等差数列的通项公式应用,渗透方程思想。

教学重、难点:等差数列的定义及等差数列的通项公式。

知识结构:一般数列定义通项公式法

递推公式法

等差数列表示法应用

图示法

性质列举法

教学过程:

(一)创设情境:

1.观察下列数列:

1,2,3,4,……;
(军训时某排同学报数)①

10000,9000,8000,7000,……;
(温州市房价平均每月每平方下跌的价位)②

2,2,2,2,……;
(坐38路公交车的车费)③

问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)

规律:从第2项起,每一项与前一项的差都等于同一常数。

引出等差数列。

(二)新课讲解:

1.等差数列定义:

一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。

问题:(a)能否用数学符号语言描述等差数列的定义?

用递推公式表示为或.

(b)例1:观察下列数列是否是等差数列:

(1)1,-1,1,-1,…

(2)1,2,4,6,8,10,…

意在强调定义中“同一个常数”

(c)例2:求上述三个数列的公差;
公差d可取哪些值?d>0,d=0,d<0时,数列有什么特点

(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影

响)

说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。

例3:求等差数列13,8,3,-2,…的第5项。第89项呢?

放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然

后引出求一般等差数列的通项公式。

2.等差数列的通项公式:已知等差数列的首项是,公差是,求.

(1)由递推公式利用用不完全归纳法得出

由等差数列的定义:,,,……

∴,,,……

所以,该等差数列的通项公式:.

(验证n=1时成立)。

这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。

(2)累加法求等差数列的通项公式

让学生体验推导过程。(验证n=1时成立)

3.例题及练习:

应用等差数列的通项公式

追问:(1)-232是否为例3等差数列中的项?若是,是第几项?

(2)此数列中有多少项属于区间[-100,0]?

法一:求出a1,d,借助等差数列的通项公式求a20。

法二:求出d,a20=a5+15d=a12+8d

在例4基础上,启发学生猜想证明

练习:

梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。

观察图像特征。

思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?

课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。

等差数列教学设计 第3篇

一、知识与技能

1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;

2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.

二、过程与方法

1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;

2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.

三、情感态度与价值观

通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.

教学过程

导入新课

师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)

(1)0,5,10,15,20,25,…;

(2)48,53,58,63,…;

(3)18,15.5,13,10.5,8,5.5…;

(4)10 072,10 144,10 216,10 288,10 366,….

请你们来写出上述四个数列的第7项.

生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.

师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.

生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.

师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.

生:1每相邻两项的差相等,都等于同一个常数.

师:作差是否有顺序,谁与谁相减?

生:1作差的顺序是后项减前项,不能颠倒.

师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);
我们给具有这种特征的数列起一个名字叫——等差数列.

这就是我们这节课要研究的内容.

推进新课

等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).

(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;

(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差.

师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)

生:从“第二项起”和“同一个常数”.

师::很好!

师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?

生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,….

师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.

[合作探究]

等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?

生:a2-a1=d,即a2=a1+d.

师:对,继续说下去!

生:a3-a2=d,即a3=a2+d=a1+2d;

a4-a3=d,即a4=a3+d=a1+3d;

……

师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?

生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.

师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?

生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:

因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.

师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.

[教师:精讲]

由上述关系还可得:am=a1+(m-1)d,

即a1=am-(m-1)d.

则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)

由此我们还可以得到.

[例题剖析]

【例1】(1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?

生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.

师:好!下面我们来看看第(2)小题怎么做.

生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1).

由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项.

师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).

说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;
(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.

【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?

例题分析:

师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?

生:只要看差an-an-1(n≥2)是不是一个与n无关的常数.

师:说得对,请你来求解.

生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕

an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,

所以我们说{an}是等差数列,首项a1=p+q,公差为p.

师:这里要重点说明的是:

(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….

(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.

(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习

(1)求等差数列3,7,11,…的第4项与第10项.

分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.

解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.

评述:关键是求出通项公式.

(2)求等差数列10,8,6,…的第20项.

解:根据题意可知a1=10,d=8-10=-2.

所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

评述:要求学生:注意解题步骤的规范性与准确性.

(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由.

分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.

解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.

令7n-5=100,解得n=15.所以100是这个数列的第15项.

(4)-20是不是等差数列0,,-7,…的项?如果是,是第几项?如果不是,请说明理由.

解:由题意可知a1=0,,因而此数列的通项公式为.

令,解得.因为没有正整数解,所以-20不是这个数列的项.

课堂小结

师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)

生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1).

等差数列教学设计 第4篇

[教学目标]

1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

2.教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一.课题引入

创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

根据等差数列的定义可得:

因此等差数列的通项公式就是:,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

将以上-1个式子相加得等差数列的通项公式就是:,

三、应用与探索

例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

四、小结

1.等差数列的通项公式:

公差;

2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3.判断一个数列是否为等差数列只需看是否为常数即可;

4.利用从特殊到一般的思维去发现数学系规律或解决数学问题.

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题

2、选做题:如何以最快的速度求:1+2+3+???+100=

等差数列教学设计 第5篇

【教学目标】

一、知识与技能

1.掌握等差数列前n项和公式;

2.体会等差数列前n项和公式的推导过程;

3.会简单运用等差数列前n项和公式。

二、过程与方法

1. 通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;

2. 通过公式的运用体会方程的思想。

三、情感态度与价值观

结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

【教学重点】

等差数列前n项和公式的推导和应用。

【教学难点】

在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。

【重点、难点解决策略】

本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。

【教学用具】

多媒体软件,电脑

【教学过程】

一、明确数列前n项和的定义,确定本节课中心任务:

本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,

如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。

二、问题牵引,探究发现

问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。你知道这个图案一共花了多少圆宝石吗?

即: S100=1+2+3+······+100=?

著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。

特点:
首项与末项的和:
1+100=101,

第2项与倒数第2项的和:
2+99 =101,

第3项与倒数第3项的和:
3+98 =101,

· · · · · ·

第50项与倒数第50项的和:
50+51=101,

于是所求的和是:
101×50=5050。

1+2+3+ ······ +100= 101×50 = 5050

同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办呢?

探索与发现1:假如让你计算从第一层到第21层的珠宝数,高斯的首尾配对法行吗?

即计算S21=1+2+3+ ······ +21的值,在这个过程中让学生发现当项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助学生思考解决问题的办法,为引出倒序相加法做铺垫。

把“全等三角形”倒置,与原图构成平行四边形。平行四边形中的每行宝石的个数均为21个,共21行。有什么启发?

1+ 2 + 3 + …… +20 +21

21 + 20 + 19 + …… + 2 +1

S21=1+2+3+…+21=(21+1)×21÷2=231

这个方法也很好,那么项数为偶数这个方法还行吗?

探索与发现2:第5层到12层一共有多少颗圆宝石?

学生探究的同时通过动画演示帮助学生思考刚才的方法是否同样可行?请同学们自主探究一下(老师演示动画帮助学生)

S8=5+6+7+8+9+10+11+12=

【设计意图】进一步引导学生探究项数为偶数的等差数列求和时倒序相加是否可行。从而得出倒序相加法适合任意项数的等差数列求和,最终确立倒序相加的思想和方法!

好,这样我们就找到了一个好方法——倒序相加法!现在来试一试如何求下面这个等差数列的前n项和?

问题2:等差数列1,2,3,…,n, … 的前n项和怎么求呢?

解:(根据前面的学习,请学生自主思考独立完成)

【设计意图】强化倒序相加法的理解和运用,为更一般的等差数列求和打下基础。

至此同学们已经掌握了倒序相加法,相信大家可以推导更一般的等差数列前n项和公式了。

问题3:对于一般的等差数列{an}首项为a1,公差为d,如何推导它的前n项和sn公式呢?

即求 =a1+a2+a3+……+an=

∴(1)+(2)可得:2

公式变形:将代入可得:

【设计意图】学生在前面的探究基础上水到渠成顺理成章很快就可以推导出一般等差数列的前n项和公式,从而完成本节课的中心任务。在这个过程中放手让学生自主推导,同时也复习等差数列的通项公式和基本性质。

三、公式的`认识与理解:

1、根据前面的推导可知等差数列求和的两个公式为:

(公式一)

(公式二)

探究:
1、(1)相同点:
都需知道a1与n;

(2)不同点:
第一个还需知道an ,第二个还需知道d;

(3)明确若a1,d,n,an中已知三个量就可求Sn。

2、两个公式共涉及a1, d, n, an,Sn五个量,“知三”可“求二”。

2、探索与发现3:等差数列前n项和公式与梯形面积公式有什么联系?

用梯形面积公式记忆等差数列前 n 项和公式,这里对图形进行了割、补两种处理,对应着等差数列 n 项和的两个公式.,请学生联想思考总结来有助于记忆。

【设计意图】帮助学生类比联想,拓展思维,增加兴趣,强化记忆

四、公式应用、讲练结合

1、练一练:

有了两个公式,请同学们来练一练,看谁做的快做的对!

根据下列各题中的条件,求相应的等差数列{an}的Sn :

(1)a1=5,an=95,n=10

解:500

(2)a1=100,d=-2,n=50

解:

【设计意图】熟悉并强化公式的理解和应用,进一步巩固“知三求二”。

下面我们来看两个例题:

2、例题1:

2000年11月14日教育部下发了<<关于在中小学实施“校校通”工程的通知>>.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网. 据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?

解:设从2001年起第n年投入的资金为an,根据题意,数列{an}是一个等差数列,其中 a1=500, d=50

那么,到2010年(n=10),投入的资金总额为

答: 从2001年起的未来10年内,该市在“校校通”工程中的总投入是7250万元。

设计意图】让学生体会数列知识在生活中的应用及简单的数学建模思想方法。

3、例题2:

已知一个等差数列{an}的前10项的和是310,前20项的和是1220,由这些条件可以确定这个等差数列的前n项和的公式吗?

解:

法1:由题意知

,

代入公式得:

解得,

法2:由题意知

,

代入公式得:

即,

②①得,,故

由得故

【设计意图】掌握并能灵活应用公式并体会方程的思想方法。

4、反馈达标:

练习一:在等差数列{an}中,a1=20, an=54,sn =999,求n.

解:由解n=27

练习2:
已知{an}为等差数列,,求公差。

解:由公式得

即d=2

【设计意图】进一强化求和公式的灵活应用及化归的思想(化归到首项和公差这两个基本元)。

五、归纳总结 分享收获:(活跃课堂气氛,鼓励学生大胆发言,培养总结和表达能力)

1、倒序相加法求和的思想及应用;

2、等差数列前n项和公式的推导过程;

3、掌握等差数列的两个求和公式,;

4、前n项和公式的灵活应用及方程的思想。

…………

六、作业布置:

(一)书面作业:

1.已知等差数列{an},其中d=2,n=15, an =-10,求a1及sn。

2.在a,b之间插入10个数,使它们同这两个数成等差数列,求这10个数的和。

(二)课后思考

思考:等差数列的前n项和公式的推导方法除了倒序相加法还有没有其它方法呢?

【设计意图】通过布置书面作业巩固所学知识及方法,同时通过布置课后思考题来延伸知识拓展思维。

附:板书设计

等差数列的前n项和

1、数列前n项和的定义:

2、等差数列前n项和公式的推导:

3、公式的认识与理解:

公式一:

公式二:

四:例题及解答:

议练活动:

推荐访问:等差数列 教学设计 等差数列教学设计 等差数列教学设计(推荐5篇) 等差数列教学设计方案