比的应用教学设计第1篇一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。二、教下面是小编为大家整理的比应用教学设计6篇,供大家参考。
比的应用教学设计 第1篇
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。
二、教学重点、难点
1、教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2、教学难点:根据数与数字关系找等量关系。
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1、复习提问
(1)列方程解应用问题的步骤?
①审题,
②设未知数,
③列方程,
④解方程,
⑤答。
(2)两个连续奇数的表示方法是,2n+1,2n-1;
2n-1,2n-3;
……(n表示整数)。
2、例1两个连续奇数的积是323,求这两个数。
分析:
(1)两个连续奇数中较大的奇数与较小奇数之差为2,
(2)设元(几种设法)。设较小的奇数为x,则另一奇数为x+2,设较小的奇数为x-1,则另一奇数为x+1;
设较小的奇数为2x-1,则另一个奇数2x+1。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一)
设较小奇数为x,另一个为x+2,据题意,得x(x+2)=323。
整理后,得x2+2x-323=0。
解这个方程,得x1=17,x2=-19。
由x=17得x+2=19,由x=-19得x+2=-17,答:这两个奇数是17,19或者-19,-17。
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1。
据题意,得(x-1)(x+1)=323。
整理后,得x2=324。
解这个方程,得x1=18,x2=-18。
当x=18时,18-1=17,18+1=19。
当x=-18时,-18-1=-19,-18+1=-17。
答:两个奇数分别为17,19;
或者-19,-17。
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1。
据题意,得(2x-1)(2x+1)=323。
整理后,得4x2=324。
解得,2x=18,或2x=-18。
当2x=18时,2x-1=18-1=17;
2x+1=18+1=19。
当2x=-18时,2x-1=-18-1=-19;
2x+1=-18+1=-17
答:两个奇数分别为17,19;
-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1、三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2、解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3、选出三种方法中最简单的一种。
练习
1、两个连续整数的积是210,求这两个数。
2、三个连续奇数的和是321,求这三个数。
3、已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。例2有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数=十位数字×10+个位数字。
三位数=百位数字×100+十位数字×10+个位数字。
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x。
据题意,得10(x-2)+x=3x(x-2),整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24。
答:这个两位数是24。
练习1有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35,53)
2、一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
教师引导,启发,学生笔答,板书,评价,体会。
(四)总结,扩展
1、奇数的表示方法为2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数。
数与数字的关系
两位数=(十位数字×10)+个位数字。
三位数=(百位数字×100)+(十位数字×10)+个位数字。
……
2、通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途。
四、布置作业
教材P.42中A1、2、
比的应用教学设计 第2篇
教学内容:
北师大版六年级数学上册第55页、第56页。
教学目标:
知识与技能:
能运用比的意义解决按照一定的比进行分配的实际问题。
过程与方法:
讲练结合,小组合作,三疑三探。
情感、态度、价值观:
进一步体会比的意义,提高解决问题的能力,培养学数学的兴趣,养成良好的思维品质。
教学重点:
理解和掌握按一定的比进行分配的意义,并进行实际应用。
教学难点:
把比熟练地转化成分数,将分数知识横向迁移。
教学准备:
多媒体课件。
教学过程:
一、创设情境,设疑自探
1、课件出示教材中的情境图,大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?学生商量分法,得出:按大班和小班的人数来分比较合理。
2、大班人数和小班人数的比是3:2,学生用小棒代替橘子分一分。
(没有告诉学生小棒的数目。)学生分好后,交流分法。
3、小结。
二、解疑合探,知识迁移
1、如果有140个橘子,按3:2分,应该怎样分?学生讨论分法,并试着解决。
2、交流方法,展示。学生可能出现的方法:
⑴、借助表格分。
⑵、发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。别占橘子总数的几分之几,最后根据分数的意义解题。
3、引导学生小结方法⑶的思路。
⑴计算分配的总份数。
⑵计算各部分占总量的几分之几。
⑶利用乘法的意义解题。
4、你喜欢哪种方法,请说明理由。
5、回忆学过的“平均分配”,可以看成几比几?
三、巩固练习,深化认识
1、小清要调制2200克巧克力奶,巧克力和奶的比是2:9。需要巧克力多少克?
2、3月12日是植树节,学校把种植60棵小树苗的任务分配给六年(3)班和二年(3)班,两班人数相等。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?
3、完成教材第56页练一练第3题合理搭配早餐。
四、总结评价,课后延伸。
1、总结。
2、布置作业。
板书设计:比的应用
大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?
3、先求出一共分成几份,再求出大班和小班分的个数分
(以上方法可借助课件演示帮助学生理解。)
比的应用教学设计 第3篇
学习目标:
1、应用比的意义,解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。
学习重点:应用比的意义,解决按照一定的比进行分配的实际问题。
学情分析、教材处理:
六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。
教学准备:水杯、水、鲜奶、茶、秤、课件。
教学过程:
一、分配礼物
师:同学们,今天的这节课,老师想送给大家一些特别的礼物,猜猜是什么?
1、想一想
①我将礼物的一半给男生、另一半给女生,你们说怎么样?
②如果你觉得不太合理,那你们认为我应当怎样分呢
③调查班级男女生人数
④假设所带礼物的数量,(不等同于人数),该怎么分呢?
如男生30人,女生20人,我只有5个礼物怎么分给男生和女生呢?每个人得到的是多少呢?如果我带10个、15个、50个礼物呢?……
⑤为什么这么多的分法你们都认为合理呢?,
师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。
【设计意图:给学生分礼物是学生最感兴趣的,好奇心立刻被激发。教师直接抛出平均分配是否合理的问题,小学生天真的心理决定了他们一定认为不合理,因为男女生人数不同。教师不断的假设,学生不断的思考,无形中给学生提供了一个又一按比分的可能,并在对比中理解到为什么按人数比来分配是最合理的。】
2、分一分(教师拿出纸杯)
①不知道有多少杯子,你建议怎么分呢?
②依照学生的建议分杯。
教师依照学生的提议逐次分杯。分后让提议查总数的人核算分配的结果
③各种分杯建议的结果一样吗?为什么?
④这些分杯的方法哪一种最好?
师:方法没有最好,只有最适合,如果知道总的数量,就直接按比来分;
如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。
3、比一比
①出示“两袋鲜奶”。直接给男生一袋、女生一袋
思考:这是平均分呢?还是按比分呢?(生答)
②其实,平均分也是按比分的一种,这个比就是1:1。
③现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)
【设计意图:分礼物的情境是从分橘子的情境中蜕变出来的,我先让学生们想一想,体味按比分是合理的;
再让学生实际分一分,感受逐次分和按比分的结果相同;
最后让学生比一比,肯定平均分也是按比分的一种。材料发放完毕了,制作奶茶的需求也随之产生了,学生的激情被又一次点燃。】
二、配制奶茶
1、制茶前明确:
A、制作奶茶需要什么材料?
B、你打算怎么来制作奶茶?是随便放吗?想想你怎样确定一下这三个材料的用量?
C、那你们想想要按着怎样的比来配呢?谁来提议一下?
D、谁理解这个比的含义了?
E、哪一个单位最合适呢?
2、回归具体的量
A、顺势提问:如果我有3克奶,要配多少茶?多少水呢?奶茶一共多少克?
B、逆势提问:如果我想配制2500克奶茶,要多少奶?多少茶?多少水呢?(板书)
想一想,你要用什么办法解决这个问题?
【设计意图:在明确单位后,顺势提问问题为的是理清数量关系,顺势思维的模型在学生的头脑中形成。紧接着的逆势提问与顺势形成强烈的对比,学生会马上领悟到其中的不同,“2500克是总量”的意识很清楚地纳入到学生的脑海中,解决问题的方法和策略也就应运而生。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
C、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】
4、品尝奶茶后的思考
A、感觉怎么样?有什么改进的建议?
B、如果在这壶(没被品尝)奶茶中加一勺糖,这时,糖就可以说是这个比中的1份了吗
师:我这一勺是多少你才认为可以在这个比中占1份呢?
C、小结:的确,几个量之间的比,必须在单位统一的前提下,才能成比,否则,每一份的量都不同,就失去了比的意义了。既然前面的一份茶,就是?克,那么这里的1份糖也应当是?克,这样,糖才能以1份的身份站在这里。现在我就将?克的糖防入奶茶中。我想,此时不仅是奶茶的味道变得甘甜了,还有什么改变了呢?
D、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)
E、师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;
依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)
【设计意图:初次品尝后的学生们是兴奋的,甚至有些人已经觉得新知识如此简单,骄傲起来,教师依据学生的需求添上一勺糖,就势将话题延伸,1勺是否能在这里充当1份呢?这个小小的转折点,会使学生的注意力立即集中起来,投入到新的问题的研究中,更深入地理解了比中各个量之间的对应关系。并在此基础上,运用心中已经建立起来的数学模型去解答新的问题了。】
三、回归生活
师:其实,比在我们生活中,应用得非常广泛。下面就让我们到各行各业中,走一走,看一看,哪些问题我们能帮助解决呢?
1、第一站:某大学后勤部
今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)
2、第二站:四丰农药加工厂
农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)
3、第三站:木材加工厂配料车间
下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。
【设计意图:考察学生对已学过的知识,三角形三边定理的掌握情况,培养学生敢于质疑,严谨思维的品质。】
4、第四站:人民法院民事审判厅
案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39万元,两个人由于没事先约定,发生争执,提出诉讼。
①你们想要什么条件呢?
②材料提供:1、建厂时,李某出资5万元,王某出资3万元。
2、经营时,李某出勤10个月,王某出勤12个月。
3、创效益,李某签定6万元合同,王某签定8万元合同。
③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?
提供法律依据:合伙企业法第33条规定
“合伙企业的利润分配、按照合伙协议的约定办理;
合伙协议未约定或者约定不明确的,由合伙人协商决定;
协商不成的,由合伙人按照实缴出资比例分配;
无法确定出资比例的,由合伙人平均分配。”
⑤现在你知道法官怎么分配财产的了吗?
【设计意图:开放的条件,开放的情景,将分配的权利留给了学生。学生会结合自己对各个条件的理解和重视程度,选择不同的分配方法,这里没有对错之分,每一种想法都是智慧的体现,可以说,这时已经超越了数学,对学生更是一次综合能力的考验。最后回归法律,将有法可依的意识渗透到学生的心中。】
四、总结反思
①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)
②师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。
比的应用教学设计 第4篇
[教材简析]
比的应用是在学生学习了比与分数的.关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
[教学目标]
知识与技能
1、理解按一定比来分配一个数的意义。
2掌握按比例分配应用题的结构特点及解题方法,。
过程与方法
1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。
2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。
情感态度与价值观
1、在问题解决过程体验成功的喜悦,对数学产生良好的情感。
2、了解比在实际生产生活中的广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。
[教学重点]
掌握解答按比例分配应用题的步骤。
[教学难点]
掌握解题的关键。
[学习方法]
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
3、教学准备
学生准备小棒140根。
[教学时间]
一课时
[教学过程]
一、创设生活情景,谈话引入。
1、创设情景提出问题。
师:各位同学,现在是橘子丰收的季节,大家来看看农场的一些丰收的场面。这些果子老师想把它们送给你们两个班的,怎么分配这些果子呢?
2、学生交流分配方案。
(1)平均分配,把橘子平均分给两个班
(2)按人数分配,人多的班分多点,人少的班分少点。
二、探讨解决问题的方法。
1、抓住契机,适时提问。
(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。
(2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?
2、合作交流,动手操作。
(1)用小棒进行实际的操作。
(2)分组进行操作,组长记录分配的过程。
(3)让学生说一说自己的分法。
3、提升认识,板书课题。
师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题—比的应用(板书课题)。
4、实际应用,解决问题。
(1)师:如果这些橘子的个数刚好是140个,按刚才的比3:2进行分配,该怎么分?
(2)学生独立完成,小组交流方法。
(3)提问方法,学生板书。
方法一:3+2=5140÷5=28(个)28×3=84(个)28×2=56(个)
方法二:3+2=5140×3/5=84(个)140×2/5=56(个)
小结:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
三、实践运用,巩固练习。
师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。
1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。
2、笑笑帮妈妈洗碗,妈妈拿给笑笑一瓶浓缩液,要求笑笑按这瓶浓缩液上的比1:4加清水稀释成600毫升的稀释液洗碗,你能帮笑笑算出要用多少毫升的浓缩液和清水呢?
3、蛋糕师傅制作蛋糕时,分别使用鸡蛋、白糖和面粉三种原料配在一起,三种原料的比:18:9:8,这样一个7千克的面团需要多少鸡蛋,白糖和面粉呢?
(1)引导学生选用喜欢的方法做题。
(2)讨论解决问题的方法。
四、联系生活,介绍比的应用的广泛性。
1、举例
师:今天我们解决了这么多关于比的问题,其实比在生活中有着非常广泛的应用,比如说消毒药水中酒精和水分配,饮料中的各种配料的比……你能举个事例吗?
2、数学书第56页练一练第2题。
3、数学故事:
一个老地主临死时把他的11匹马分给三个儿子,老大继承二分之一,老二继承四分之一,老三继承六分之一,可是三个儿子不知道怎样分,你能帮助他吗?
孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。
五、回顾教学,总结方法。
1、引导学生总结比的应用的一些方法。
2、这节课你有什么收获?
六、作业。
我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。
板书设计
比的应用
方法一:3+2=5方法二:3+2=5
140÷5=28(个)140×3/5=84(个)
28×3=84(个)140×2/5=56(个)
28×2=56(个)
答:大班分到84个,小班分到56个。
《比的应用》教学反思
一、充分挖掘教材,旧知迁移新知。
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。
二、借助多媒体或教具,助学生理解新知识。
学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。
三、教师在小结升华时讲解。
学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
比的应用教学设计 第5篇
教学目标:
1. 帮助学生理解、掌握稍复杂的分数乘法应用题的数量关系,学会用两种方法解答求一个树比少几分之几的分数应用题。
2. 学生能够理解稍复杂的分数乘法应用题的解题思路,提高分析、推理等思维能力。
3. 经过小组合作,让学生发现和探讨问题,在合作和交流的过程中,获得良好的情感体验,激发学生学习的兴趣,体验到数学与生活的密切联系。
教学重点:理解分数应用题的数量关系,会用两种方法灵活解答。
教学过程:
一. 巧设铺垫,激趣导入
1. 创设情景:同学们,今天我们班来了一位特殊的嘉兵,谁呢?(请出小记者)现在我们来做个现场采访:在前面所的知识中,你感觉哪部分知识比较难理解?(学生自由发言,与小记者产生共鸣,从而引出“应用题”)
2. 设疑:小记者请求大家来帮助他如何理解、掌握应用题?
3. 小记者设问探讨:解答前面所学的分数应用题关键在哪?(学生自由探讨,发表意见,引出找关键句、找单位“1”及数量关系,也可画线段图理解关系)
[设计意图:对于六年级学生来说,应用题是感到既头疼又枯燥的知识,课一开始,创设一个学生喜闻乐见的故事情景,为新知的引出拉开了一个良好的序幕,使枯燥的数学内容生活花、趣味化。通过巧妙设疑,既复习了以往所学分数应用题的关键所在,又为今天所要学的新知作了铺垫,可谓是“一石数鸟”。该环节切实做到了在情景中习旧,激活了学生原有的认知结构。]
4. 小记者示题:说出下面各题的单位“1”及数量关系。
(1)一些奖状,发了3/5
(2)已经看了全书的1/8
(3)男生占全班人数的3/7
(学生自由口述,选择喜欢的题目解答)
引出“刚刚的3句话,在应用题中是作为什么部分?(关键句)
5. 示问:除了刚刚的几句关键句,你能找出在生活中哪些地方也用过类似的话?又如何找出单位“1”及数量关系(学生自由探讨,根据学生回答选择适当的关键句写在黑板上,为后面服务)
[设计意图:突出“从学生已有的生活经验出发每让学生亲身经理将实际问题抽象成数学模型并进行解释与应用的过程”,有效突破了教学重点,其找一找、说一说的教学设计为学生提供了丰富的体验,激发了学生的求知欲望。生活中处处有数学,引用生活中的素材,制造认知冲突,不知不觉中激发了学生探索新知的欲望,让学生进入了自主探究的积极状态。既尊重了学生的已有知识储备,又为新知的构建架设桥梁。]
二. 探索交流,建构新知。
(一)自由构建新知。
1. 设疑:一道完整的应用题除了关键句,还需要什么部分?(学生交流,引出“条件、问题“)
2. 编题:那你能否选择自己喜欢的关键句,补充一道完整的应用题?并思考如何解决?我们分小组比赛,看哪小组合作的既快又有新意,可邀请我们的小记者和老师一并参与(分小组合作探讨、交流)
[设计意图:富有挑战性的问题犹如一枚枚石子投入蓄势已入的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作、足以让学生获得积极的、深层次的体验。行云流水般的分数应用题教学全无例行公事、思路闭所,空间狭小之嫌。正所谓“灵感总青睐有准备的头脑”。学生结合自己的生活经验,自由提问,可以培养学生的发散性思维,并培养学生的问题意识。往往提出一个问题可能比解决问题更为有意义。这一环节,把学习的主动权真正交给了学生,让学生通过小组合作的方式操作,通过动脑编题——动手写题——自主探索、合作交流解题,放手让学生去探索,并通过小组合作比赛,这样不仅充分激发了学生的学习积极性,而且使学生体会了发现、掌握新知的方法。
(二)探讨交流新知。
1. 交流展示成果:选一些小组向全班交流
根据小组的汇报,选出一些典型的题目(多媒体)适时展示,全班共同交流。
例如:一些奖状共15张,发了3/5,还剩几张?(发了几张?)(发了的的比剩下的少几张?发了的比剩下的少几分之几?)
示问:对刚刚那小组的成果(题目),你们会帮忙解答吗?(全班尝试解答,请部分学生板演)
2. 交流:“还剩几张”你是怎么想的?
学生介绍方法:
(1)根据数量关系,总共的—发了的=剩下的,总共的×3/5=运走的
15—15×3/5
=15—9
=6(张)
(2)画线段图帮助理解。
分析:结合线段图理解“把什么看作单位“!”,运走了几分之几,还剩几分之几,各是哪部分?怎么表示的?)
15×(1—3/5)
=15×2/5
=6(张)
整个方法介绍过程中,全班同学共同参与,群策群力,教师根据学生回答情况适时点拨。
3. 小结:刚刚由于全班的共同努力,我们自己的问题自己想办法解决了,真是聪明!看来我们集体的智慧是无穷的。我们用了哪些方法来解答刚刚那一小组的题目的,说说你比较喜欢那种。(自由发言)
那对于刚刚的方法还有什么困惑的吗?提出来大家共同解答。
[设计意图:不再将黑板视为教师神圣的领地,把黑板的权利回归学生。黑板上的每个解题过程后面渡藏着那个经典的解题思路、方法,学生的交流无不是将已经获得的主观影象投射在所写的算式、线段图中,萝卜青菜各有所爱,学生的求异心态无时无刻不让其他学生处于活跃的互动之中。这一环节,通过让学生自己尝试解题并说出解题意图,将自己所学的知识融入到方法中,让学生的个性发挥得淋漓尽致,数学课堂充满生命活力,学生对学习重难点的理解得意进一步的升华。通过小组展示比赛,促进学生的积极的情感和态度,知识的形成过程在比赛展示中形成,学生比较感兴趣。]
(三)灵活运用新知。
1. 小记者发言:谢谢同学们,通过刚才的参与讨论,然后听了大家介绍的好方法,体会到了解答应用题的乐趣。领略了你们班同学的风采,收益非浅,表示感谢!(拿出“智慧奖、创意奖”等奖状感谢刚刚表现突出的学生。)设疑:还剩下的问题能帮忙解决吗?
2. 学生解答剩余的题目,拓展、巩固对新知的理解。(自由发言、交流)
4. 小记者兴致昂然,想展示一下自己学到的本领,请其余同学出题来考他。(学生出题,视平台展示)
4. 创设情景:小记者解答有困难(数量关系出错,对应分率出错)请同学们帮助解答。
突出强调解答应用题的方法(理清数量关系,理清对应分率)
[设计意图:结合学生表现颁发奖状,与我们的例题浑然一体,学生兴趣昂然激发了学生后面解决问题的积极性。同时设立小记者遇到困难,突出强调今天所学的知识的重点。这一活动,还是放手让学生自己去提问,再自己解决,充分相信学生,有助于扩展学生的思维空间,培养学生的创新意识和合作精神,增强了数学内容的趣味性、开放性。
三.巩固应用
小记者出题:看同学们表现那么棒,考官做的那么溜,也想当会考官,你们敢不敢应战?(多媒体演示出题)
[总体设想]:
我设计的“稍复杂的分数应用题”教学设计是为新授部分服务的,具体有以下几个特点:
1. 从生活经验导入新课,使数学问题生活化。
课一开始,联系学生学习生活实际,说说学习方面比较困惑的知识话题导入新课,从“解答应用题关键所在”来切入主题。这样做使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲切感,他们被浓浓的生活气息所感动,兴致勃勃的投入到新课的学习之中。
2. 让学生亲身体验知识的形成和发展。
小学生已经具有了一定的生活经验,因此教师设计了这样一个情节:小组自由选择喜欢的关键句编题并思考如何解答。学生通过合作探讨交流,得出解答的方法。从自己质疑——解疑问——汇报交流,整个教学过程环环相扣,双基训练扎实。教学中设置了许多开放性问题,拓宽了学生进行实践、创新学习的课程渠道,注重学生的情感体验和个性发展,增强数学内容的趣味性、开放性,强调学生数学学习的过程。
3. 注重学习的开放性,学生的自主探究、合作交流。
整个学习过程,从问题导入,引出新知,到自由探讨新知,解决问题都是学生自主探究形成,真正主人教师只是参与其中,从而引导和辅助。学生是整节课引发的一环有一环,促使学生层层深入的思考,让学生自觉地、全身性的投入到学习活动中,用心发现、用心思考、真诚交流。
比的应用教学设计 第6篇
[教材简析]
比的应用是在学生学习了比与分数的关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
[教学目标]
知识与技能
1、理解按一定比来分配一个数的意义。
2掌握按比例分配应用题的结构特点及解题方法,。
过程与方法
1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。
2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。
情感态度与价值观
1、在问题解决过程体验成功的喜悦,对数学产生良好的情感。
2、了解比在实际生产生活中的广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。
[教学重点]
掌握解答按比例分配应用题的步骤。
[教学难点]
掌握解题的关键。
[学习方法]
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
3、教学准备
学生准备小棒140根。
[教学时间]
一课时
[教学过程]
一、创设生活情景,谈话引入。
1、创设情景提出问题。
师:各位同学,现在是橘子丰收的季节,大家来看看农场的一些丰收的场面。这些果子老师想把它们送给你们两个班的,怎么分配这些果子呢?
2、学生交流分配方案。
(1)平均分配,把橘子平均分给两个班
(2)按人数分配,人多的班分多点,人少的班分少点。
二、探讨解决问题的方法。
1、抓住契机,适时提问。
(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。
( 2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?
2、合作交流,动手操作。
(1)用小棒进行实际的操作。
(2)分组进行操作,组长记录分配的过程。
(3)让学生说一说自己的分法。
3、提升认识,板书课题。
师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题—比的应用(板书课题)。
4、实际应用,解决问题。
(1)师:如果这些橘子的个数刚好是140个,按刚才的比3:2进行分配,该怎么分?
(2)学生独立完成,小组交流方法。
(3)提问方法,学生板书。
方法一:3+2=5140÷5=28(个) 28×3=84(个) 28×2=56(个)
方法二:3+2=5140×3/5=84(个) 140×2/5=56(个)
小结:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
三、实践运用,巩固练习。
师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的"知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。
1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。
2、笑笑帮妈妈洗碗,妈妈拿给笑笑一瓶浓缩液,要求笑笑按这瓶浓缩液上的比1:4加清水稀释成600毫升的稀释液洗碗,你能帮笑笑算出要用多少毫升的浓缩液和清水呢?
3、蛋糕师傅制作蛋糕时,分别使用鸡蛋、白糖和面粉三种原料配在一起,三种原料的比:18:9:8,这样一个7千克的面团需要多少鸡蛋,白糖和面粉呢?
(1)引导学生选用喜欢的方法做题。
(2)讨论解决问题的方法。
四、联系生活,介绍比的应用的广泛性。
1、举例
师:今天我们解决了这么多关于比的问题,其实比在生活中有着非常广泛的应用,比如说消毒药水中酒精和水分配,饮料中的各种配料的比……你能举个事例吗?
2、数学书第56页练一练第2题。
3、数学故事:
一个老地主临死时把他的11匹马分给三个儿子,老大继承二分之一,老二继承四分之一,老三继承六分之一,可是三个儿子不知道怎样分,你能帮助他吗?
孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。
五、回顾教学,总结方法。
1、引导学生总结比的应用的一些方法。
2、这节课你有什么收获?
六、作业。
我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。
板书设计
比的应用
方法一:3+2=5 方法二:3+2=5
140÷5=28(个)140×3/5=84(个)
28×3=84(个) 140×2/5=56(个)
28×2=56(个)
答:大班分到84个,小班分到56个。
《比的应用》教学反思
一、充分挖掘教材,旧知迁移新知。
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。
二、借助多媒体或教具,助学生理解新知识。
学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。
三、教师在小结升华时讲解。
学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。